NASA GHRC Collaboration between NASA MSFC and The University of Alabama in Huntsville
  • Access Data
    • Dataset List (HyDRO)
      • View a list of all GHRC dataset holdings using our custom search tool, HyDRO.
    • Search (HyDRO)
      • HyDRO is GHRC's custom dataset search and order tool.

        With HyDRO, you can search, discover, and filter GHRC's dataset holdings.

        HyDRO will also help you find information about browse imagery, access restrictions, and dataset guide documents.
    • NASA Earthdata Search
      • Earthdata is NASA's next generation metadata and service discovery tool, providing search and access capabilities for dataset holdings at all of the Distributed Active Archive Centers (DAACs) including the GHRC.
    • Latest Data (HyDRO)
      • View the latest additions to our data holdings using HyDRO.
  • Measurements
  • Field Campaigns
    • Hurricane Science
      • GHRC has worked with NASA's Hurricane Science Research Program (HSRP) since the 1990's. We are the archive and distribution center for data collected during HSRP field campaigns, as well as the recent Hurricane Science and Severe Storm Sentinel (HS3) Earth Venture mission. Field campaigns provide for intensive observation of specific phenomena using a variety of instruments on aircraft, satellites and surface networks.

        GHRC also hosts a database of Atlantic and Pacific tropical storm tracks derived from the storm data published by the National Hurricane Center (NHC).
    • HS3 (2012-14)
      • Hurricane and Severe Storm Sentinel (HS3) is an Earth Ventures – Suborbital 1 mission aimed at better understanding the physical processes that control hurricane intensity change, addressing questions related to the roles of environmental conditions and internal storm structures to storm intensification.

        A variety of in-situ, satellite observations, airborne data, meteorological analyses, and simulation data were collected with missions over the Atlantic in August and September of three observation years (2012, 2013, 2014). These data are available at GHRC beginning in 2015.
    • GRIP (2010)
      • The Genesis and Rapid Intensification Processes (GRIP) experiment was a NASA Earth science field experiment in 2010 that was conducted to better understand how tropical storms form and develop into major hurricanes.

        The GRIP deployment was 15 August – 30 September 2010 with bases in Ft. Lauderdale, FL for the DC-8, at Houston, TX for the WB-57, and at NASA Dryden Flight Research Facility, CA for the Global Hawk.
    • TC4 (2007)
      • The NASA TC4 (Tropical Composition, Cloud and Climate Coupling) mission investigated the structure and properties of the chemical, dynamic, and physical processes in atmosphere of the tropical Eastern Pacific.

        TC4 was based in San Jose, Costa Rica during July 2007.

        The Real Time Mission Monitor provided simultaneous aircraft status for three aircraft during the TC4 experiment. During TC4, the NASA ER-2, WB-57 and DC-8 aircraft flew missions at various times. The science flights were scheduled between 17 July and 8 August 2007.
    • NAMMA (2006)
      • The NASA African Monsoon Multidisciplinary Analyses (NAMMA) campaign was a field research investigation based in the Cape Verde Islands, 350 miles off the coast of Senegal in west Africa.

        Commenced in August 2006, NASA scientists employed surface observation networks and aircraft to characterize the evolution and structure of African Easterly Waves (AEWs) and Mesoscale Convective Systems over continental western Africa, and their associated impacts on regional water and energy budgets.
    • TCSP (2005)
      • The Tropical Cloud Systems and Processes (TCSP) mission was an Earth science field research investigation focused on the study of the dynamics and thermodynamics of precipitating cloud systems and tropical cyclones. TCSP was conducted during the period July 1-27, 2005 out of the Juan Santamaria Airfield in San Jose, Costa Rica.

        The TCSP field experiment flew 12 NASA ER-2 science flights, including missions to Hurricanes Dennis and Emily, Tropical Storm Gert and an eastern Pacific mesoscale complex that may possibly have further developed into Tropical Storm Eugene.
    • ACES (2002)
      • The Altus Cumulus Electrification Study (ACES) was aimed at better understanding the causes and effects of electrical storms.

        Based at the Naval Air Station Key West in Florida, researchers in August 2002 chased down thunderstorms using an uninhabited aerial vehicle, or "UAV", allowing them to achieve dual goals of gathering weather data safely and testing new aircraft technology. This marked the first time a UAV was used to conduct lightning research.
    • CAMEX-4 (2001)
      • The Convection And Moisture EXperiment (CAMEX) was a series of NASA-sponsored hurricane science field research investigations. The fourth field campaign in the CAMEX series (CAMEX-4) was held in 16 August - 24 September, 2001 and was based out of Jacksonville Naval Air Station, Florida.

        CAMEX-4 was focused on the study of tropical cyclone (hurricane) development, tracking, intensification, and landfalling impacts using NASA-funded aircraft and surface remote sensing instrumentation.
    • CAMEX-3 (1998)
      • The Convection And Moisture EXperiment (CAMEX) is a series of hurricane science field research investigations sponsored by NASA. The third field campaign in the CAMEX series (CAMEX-3) was based at Patrick Air Force Base, Florida from 6 August - 23 September, 1998.

        CAMEX-3 successfully studied Hurricanes Bonnie, Danielle, Earl and Georges, yielding data on hurricane structure, dynamics, and motion. CAMEX-3 collected data for research in tropical cyclone development, tracking, intensification, and landfalling impacts using NASA-funded aircraft and surface remote sensing instrumentation.
    • GPM Ground Validation
      • The NASA Global Precipitation Measurement Mission (GPM) Ground Validation (GV) program includes the following field campaigns:

        a) LPVEx, Gulf of Finland in autumn 2010, to study rainfall in high latitude environments

        b) MC3E, cental Oklahoma spring and early summer 2011, to develop a complete characterization of convective cloud systems, precipitation and the environment

        c) GCPEx, Ontario, Canada winter of 2011-2012, direct and remove sensing observations, and coordinated model simulations of precipitating snow.

        d) IFloodS, Iowa, spring and early summer 2013, to study the relative roles of rainfall quantities and other factors in flood genesis.

        e) IPHEx, N. Carolina Appalachians/Piedmont region May-June 2014, for hydrologic validation over varied topography.

        f) OLYMPEx, Washington's Olympic Peninsula scheduled November 2015-February 2016, for hydrologic validation in extreme coastal and topographic gradients
    • OLYMPEX (Upcoming)
      • The OLYMPEX field campaign is scheduled to take place between November, 2015, and February, 2016, on the Olympic Peninsula in the Pacific Northwest of the United States.

        This field campaign will provide ground-based validation support of the Global Precipitation Measurement (GPM) satellite program that is a joint effort between NASA and JAXA.

        As for all GPM-GV campaigns, the GHRC will provide a collaboration portal to help investigators exchange planning information and to support collection of real-time data as well as mission science, project and instrument status reports during the campaign.
    • IPHEx (2014)
      • The Integrated Precipitation and Hydrology Experiment (IPHEx) was conducted in North Carolina during the months of April-June, 2014.

        IPHEx sought to characterize warm season orographic precipitation regimes, and the relationship between precipitation regimes and hydrologic processes in regions of complex terrain.
    • IFLOODs (2013)
      • The Iowa Flood Studies (IFloodS) experiment was conducted in the central to northeastern part of Iowa in Midwestern United States during the months of April-June, 2013.

        IFloodS' primary goal was to discern the relative roles of rainfall quantities such as rate and accumulation as compared to other factors (e.g. transport of water in the drainage network) in flood genesis.
    • GCPEX (2011-2012)
      • The GPM Cold-season Precipitation Experiment (GCPEx) occurred in Ontario, Canada during the winter season (Jan 15- Feb 26) of 2011-2012.

        GCPEx addressed shortcomings in GPM snowfall retrieval algorithm by collecting microphysical properties, associated remote sensing observations, and coordinated model simulations of precipitating snow. Collectively the GCPEx data set provides a high quality, physically-consistent and coherent data set suited to the development and testing of GPM snowfall retrieval algorithm physics.
    • MC3E (2011)
      • The Mid-latitude Continental Convective Clouds Experiment (MC3E) took place in central Oklahoma during the April–June 2011 period.

        The overarching goal was to provide the most complete characterization of convective cloud systems, precipitation, and the environment that has ever been obtained, providing constraints for model cumulus parameterizations and space-based rainfall retrieval algorithms over land that had never before been available.
    • LPVEx (2010)
      • The Light Precipitation Evaluation Experiment (LPVEx) took place in the Gulf of Finland in September and October, 2010 and collected microphysical properties, associated remote sensing observations, and coordinated model simulations of high latitude precipitation systems to drive the evaluation and development of precipitation algorithms for current and future satellite platforms.

        In doing so, LPVEx sought to address the general lack of dedicated ground-validation datasets from the ongoing development of new or improved algorithms for detecting and quantifying high latitude rainfall
  • Projects
    • HS3 Suborbital Mission
      • Hurricane and Severe Storm Sentinel (HS3) is an Earth Ventures – Suborbital 1 mission aimed at better understanding the physical processes that control hurricane intensity change, addressing questions related to the roles of environmental conditions and internal storm structures to storm intensification.
    • DISCOVER - MEaSUREs
      • DISCOVER was funded by NASA’s MEaSUREs program to provide highly accurate, multi-decadal geophysical products derived from satellite microwave sensors.
    • LIS Mission
      • Lightning observations from the Lightning Imaging Sensors (LIS) aboard the NASA’s TRMM satellite and International Space Station, as well as airborne observations and ground validation data.
    • SANDS
      • The SANDS project addressed Gulf of Mexico Alliance priority issues by generating enhanced imagery from MODIS and Landsat data to identify suspended sediment resulting from tropical cyclones. These tropical cyclones have significantly altered normal coastal processes and characteristics in the Gulf region through sediment disturbance.
    • LANCE AMSR2
      • The Land, Atmosphere Near real-time Capability for EOS (LANCE) system provides access to near real-time data (less than 3 hours from observation) from AIRS, AMSR2, MLS, MODIS, and OMI instruments. LANCE AMSR2 products are generated by the AMSR Science Investigator-led Processing System at the GHRC.
  • Resources
    • Tools & Technologies
      • A collection of tools & technologies developed and/or used by GHRC.
    • Publications
      • View GHRC & ITSC publications on the ITSC website
    • Innovations Lab
      • The GHRC Innovations Lab is a showcase for emerging geoinformatics technologies resulting from NASA-sponsored research at the University of Alabama in Huntsville.
    • Educational Resources
      • A list of resources from NASA, MSFC, and other sources for teachers and students focused on global change, hydrology, and science education.
    • Referencing our data
      • GHRC dataset citation help and examples.
    • Documents
      • Documentation related to GHRC datasets, software, and other offerings.
    • Glossary
      • Terms and their definitions
    • Featured items
      • The latest tools from GHRC.
  • Multimedia
  • About
    • Welcome
      • Local resources, lodging information, and weather to help you plan your visit to GHRC.
    • GHRC Personnel
      • A list to help you keep in touch with our personnel
    • FAQ
      • Frequently Asked Questions about GHRC data and services, and their answers.
    • Data Citations and Acknowledgements
      • GHRC dataset citation help and examples
  • Cite Us
  • Contact Us
feedback
DOCUMENTATION

Documentation

Guide Documents

Dataset PI Documents

Dataset Software

CAMEX-4 NOAA WP-3D Radar (KAMP)

Table of Contents

General Information
RADAR Characteristics
Tape Formats
Data Distribution
References
Contact Information

General information

The Convection And Moisture EXperiments (CAMEX) are a series of field research investigations sponsored by the Earth Science Enterprise of the National Aeronautics and Space Administration (NASA). CAMEX-4 focused on the study of tropical cyclone (hurricane) development, tracking, intensification, and landfalling impacts using NASA-funded aircraft and surface remote sensing instrumentation.

The fourth field campaign in the CAMEX series (CAMEX-4) ran from 16 August to 25 September, 2001 and was based out of Jacksonville Naval Air Station, Florida. An important addition to CAMEX-4 was the participation of the NOAA weather reconnaissance WP-3D that collected radar, video and microphysical data.

Each WP-3D aircraft has three radars: nose, lower fuselage and tail. The nose radar (a solid-state C-band radar with a 5° circular beam) is used strictly for flight safety and is not recorded for research purposes. The lower fuselage and tail radars are used for research purposes and the data are recorded on Digital Audio Tape since 1993.

Radar Characteristics

The lower fuselage and tail radar characteristics are:

Device Parameter Units Lower Fuselage Tail
Transmitter Frequency MHz 5370 9315
Wavelength cm 5.59 3.22
PRF µs 200 1600
Pulse Length m 6.0
(1800 m)
0.5
(105 m)
Peak Power kW 70.0 60.0
MDS dBm -102 -111
Antenna Hor. Beam Width deg 1.1 1.35
Vert. Beam Width deg 4.1 1.90
Gain dB 37.5 40.0
Polarization N/A linear
(horizontal)
linear
(vertical)
Stabilization deg ±5
(pitch, roll)
±25
(pitch, drift)
Radar Velocity Nyquist interval m/s N/A 12.88
Maximum unambiguous range km N/A 93.75

The major drawback of the Lower Fuselage radar is the large vertical beamwidth (4.1°) which causes inadequate illumination of the targets in the beam. Inadequate beam filling is a severe problem in the estimation of the reflectivity of a storm at ranges >60-90 km (see the Appendix of Marks, 1985). The critical parameters that determine the beam illumination of the target storm are the beam's vertical dimension and orientation, and the aircraft altitude. At close range there is little loss because the radar beam is narrow enough to be totally within the strong reflectivity region at lower altitudes in the storm. As range increases, the height of the center of the beam increases and more of the beam is unfilled, or filled with the less reflective portion of the storm. This problem can be solved by compositing a number of radar sweeps in time over a fixed domain. (storm- or earth-relative)

The major drawback of the Tail radar is the 3.22 cm wavelength (X-band) and high PRF. X-Band radars suffer from intervening rain attenuation which limit the maximum range at which Doppler estimates are obtained. This problem is remedied by flying close to the area of interest, reducing the distance the beam has to travel through the intervening rainfall. The high PRF, coupled with the short wavelength result in a low velocity Nyquist interval and unambiguous range. The low Nyquist velocity is the hardest of the two to compensate for as intervening attenuation minimizes problems with second trip echoes. The low Nyquist velocity can be overcome through unfolding utilizing the measured component of the air velocity along the radar beam at the aircraft as a first guess. HRD has successfully unfolded velocities as high as 90 m/s using this approach in hurricanes. http://www.aoml.noaa.gov/hrd/HRD-P3_radar.html

Tape Formats

The RADAR data tapes were created on Hewlett Packard 16 bit machines. These tapes contain raw binary data records with variable record lengths. The binary format of the data is outlined in section II of the MARS ROS: Prog. Des. Manual, as supplied by NOAA/AOML/Hurricane Research Division. http://www.aoml.noaa.gov/contact.html

A local copy of this document in PDF form is included with the documentation, and can be seen here.

Data Distribution

Data are archived and distributed on 8mm tapes. Distributed tapes are byte for byte copies of our master tape, via a 8mm tape duplicator.

Flight Identification and Times for these data:

NOAA P-3 RADAR DATA TAPES, Four 8mm tapes, 1 tape per flight:
--------------------------------------------------------------------
FLIGHT Start - Stop
20010903H1 KAMP 151713 - 172121Z
20010907H1 KAMP 162313 - 191504Z
20010909H1 KAMP 160035 - 204113Z
20010919H1 KAMP 155740 - 204141Z

These tapes were supplied by:

Atlantic Oceanographic and Meteorological Laboratory
4301 Rickenbacker Causeway
Miami, FL 33149
http://www.aoml.noaa.gov/contact.html

Any Question about the data, or the data format should be directed to the data supplier.

References

Kollias, P., B.A. Albrecht, and F.D. Marks. 2003 "Cloud radar observations of vertical drafts and microphysics in convective rain." Journal of Geophysical Research, 108(D2) pp.4053

Black, M.L., J.F. Gamache, F.D. Marks, C.E. Samsury, and H.E. Willoughby. 2002 "Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994 pp. The effect of vertical shear on structure and intensity." Monthly Weather Review, 130(9) pp.2291-2312

Kollias, P., B.A. Albrecht, and F.D. Marks. 2002 "Why Mie?" Bulletin of the American Meteorological Society, 83(10) pp.1471-1483

Walsh, E.J., C.W. Wright, D. Vandemark, W.B. Krabill, A.W. Garcia, S.H. Houston, S.T. Murillo, M.D. Powell, P.G. Black, and F.D. Marks. 2002 "Hurricane directional wave spectrum spatial variation at landfall." Journal of Physical Oceanography, 32(6) pp.1667-1684

Atlas, D., C.W. Ulbrich, F.D. Marks, R.A. Black, E. Amitai, P.T. Willis, and C.E. Samsury. 2000 "Partitioning tropical oceanic convective and stratiform rains by draft strength." Journal of Geophysical Research, 105(D2) pp.2259-2267

Lee, W.-C., and F.D. Marks. 2000 "Tropical cyclone kinematic structure retrieved from single Doppler radar observations, Part II: The GBVTD-simplex center finding algorithm." Monthly Weather Review, 128(6) pp.1925-1936

Lee, W.-C., B. J.-D. Jou, P.-L. Chang, and F.D. Marks. 2000 "Tropical cyclone kinematic structure retrieved from single-Doppler radar observations. Part III: Evolution and structures of Typhoon Alex (1987)." Monthly Weather Review, 128(12) pp.3982-4001

Reasor, P.D., M.T. Montgomery, F.D. Marks, and J.F. Gamache. 2000 "Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar." Monthly Weather Review, 128(6) pp.1653-1680

Rogers, R.F., J.M. Fritsch, and W.C. Lambert. 2000 "A simple technique for using radar data in the dynamic initialization of a mesoscale model." Monthly Weather Review, 128(7) pp.2560-2574

Dodge, P.P., R.W. Burpee, and F.D. Marks. 1999 "The kinematic structure of a hurricane with sea-level pressure less than 900 mb." Monthly Weather Review, 127(6) pp.987-1004

Black, M.L., R.W. Burpee, and F.D. Marks. 1996 "Vertical motion characteristics of tropical cyclones determined with airborne Doppler radial velocities." Journal of the Atmospheric Sciences, 53(13) pp.1887-1909

Marks, F.D., 1985 "Evolution and structure of precipitation in Hurricane Allen (1980)." Mon. Wea. Rev., 113, 909-930.

Contact Information

To order these data or for further information, please contact:

Global Hydrology Resource Center
User Services
320 Sparkman Drive
Huntsville, AL 35805
Phone: 256-961-7932
E-mail: support-ghrc@earthdata.nasa.gov
Web: http://ghrc.nsstc.nasa.gov/

 

ITSC

UAH

RSS feed GHRC Facebook GHRC Twitter

NASA Official:
Manil Maskey

Website maintained by the
UAH ITSC Web Team

If you have trouble viewing or
navigating this page, please contact
GHRC User Services

NASA Web Privacy Policy and Important Notices


    The GHRC is a member of the ICSU World Data System