Quantitative Image Restoration Irina Gladkova, Michael Grossberg, NOAA-CREST

Purpose of the project:

Development of the statistically sound and high performance quantitative image restoration algorithm, ensuring utilization of the data produced by GOES-R sensors.

The technical approach is based on adapting and enhancing our previous work on the restoration of MODIS 1.6 micron band

Impact on products: The algorithm is quantitative in that the restoration will be a numerical estimate suitable for input to GOES-R products

Risk: Potential Instrument Damage

Solution: Quantitative Restoration

NOAA CREST

Restoration Approach

- Other bands correlated / have mutual information
- Spatial correlations within damaged band / can use good detectors for training
- Window based algorithm
- Locally varying regression

Special + Spectral Algorithm

Shared information

Local prediction

Milestones and Outcomes

Year 1 milestones and progress:

Adapt our current 1.6 micron band MODIS restoration algorithm to work with visible bands of the ABI simulated data (ongoing)

Adapt our current algorithm on visible bands to operate on near infra-red and infra-red bands (ongoing)

Investigate improvements by integrating spatial interpolation within the damaged channel with cross band interpolation

Investigate fusing information from full disk and CONUS high resolution for restoration

Outcomes:

An open source software library (source code) Documentation and regression tests Publications