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Outline

e Vorticity calculation and thermodynamic
evolution during TC genesis (Helms)

A7« TC eyewall tilt and intensity (Hazelton)

* Objective TC structure definition and global
climatology from satellites (Cossuth)

 New vortex-environment separation (Creighton)




Part 1: GRIP Dropsonde-Derived Vorticity
and RH Vertical Structure (Helms and Hart)

First we build upon prior approaches to in-situ
data to derive reliable vorticity estimates

— Advect dropsondes to produce a time-space
conversion (error-prone in accelerating flow)

— Use Green’s function to calculate vorticity from
polygons generally larger than n=3

* Analyze vorticity and its relationship to
moisture for developing vs. non-developing
systems



Sample dropsonde field from GRIP

and resulting steps for vorticity
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Developing Case 1 (PGI44L — Karl)
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Developing Case 1 (PGI44L — Karl)
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Developing Case 2 (PGI46L - Matthew)
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Non-Developing Case (PGI27L)
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Part 1: Summary

Initial tilt of vorticity exists in all three cases
— The sign of the tilt varies with case

The uprighting of the vorticity column occurs in both
developing and non-developing cases

In the three cases examined, the mid-level RH was
significantly different (developing vs. non-developing),
consistent with much recent work including Nolan (2007)

However, in other cases not shown here, the moisture was
not a significant discriminator. See Poster for more detail.



Part 2: Eyewall tilt and Intensity
(Hazelton and Hart)

Eyewall slope has been predicted since the earliest theoretical
models of axisymmetric balance (warm-core vortex that
weakens with height requires outward sloping M-surface)

Shea and Gray (1975): relationship between RMW & intensity

Stern and Nolan (2009): used airborne Doppler to show little
relationship between the same

Here we use the reflectivity to define the edge of the eyewall
and find quite different results



Data/Methodology

* In this study, we build a relatively large dataset of slopes
based on radar reflectivity.

— 100 passes from 17 TCs (2004-2011) from three sources
— APR2 radar from the NASA-DCS8 during the GRIP field campaign.
— EDOP radar data from the CAMEX4 field campaign
— Tail radar from the NOAA-P3 flights from HRD

— Thanks to Stephen Durden at NASA JPL for information about
APR2 radar data, Rob Rogers and HRD for their data and
interpretation, and Pete Black for his feedback

e QOur study examines the relationship between the slope of
the edge of the eye and TC intensity, rather than the
relationship between the RMW slope and intensity.
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Noteworthy Features of Slope Distribution
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Relationship between tilt and intensity

Minimum Central Pressure vs. Eye Slope (Colorized by Storm)
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Variance: Examples of R(Slope, Intensity)
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Pressure-Slope Lag

Correlation Between Slope and Best-Track
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Ongoing work: Examine all azimuths
rather than just two transects
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Part 2: Summary

There does appear to be a stat. significant relationship between
edge of eye slope and intensity as defined here

— The contrast with Stern and Nolan (2009) may be due to the different
definitions for slope and their physical meanings (RMW vs. edge of
indirect circulation in eye?)

The relationship is optimized for a lag of about 12hr implying
forecasting potential but requires further refinement

A significant non-zero mean across-eye tilt differential may
suggest either mean shear for cases examined, tilt due to
(baroclinic) beta-gyres, or both

Poster this afternoon has example case studies, including Earl



3: Global structure
(Cossuth and Hart)

* New datasets and techniques permit us to for
the first time arrive at global climatologies of
eye structure and its relationship to intensity

e Utilize the HURSAT satellite database (1987-
2008) (Knapp 2010)

e Use ARCHER technique (Wimmers and Velden
2010) to objectively determine center and eye
Size



Example applications of ARCHER technique
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Example applications of ARCHER technique
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Global satellite-based climatology

of eye size and intensity

TC Eye Diameter (km)/Intensity (kt) Climatology
a) CIMSS ARCHER on NCDC HURSAT MW [1987-2008]
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TC Eye Diameter (km)/Intensity (kt) Climatology
a) CIMSS ARCHER on NCDC HURSAT MW [1987-2008]
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Part 3: Summary

New software has allowed for objective (but not perfect)
center location and eye size determination from satellite data

This has permitted the first global climatology of TC structure
and its existence including regions without recon.

Ongoing work to examine relationships between intensity and
structure, and to define new objective measures of structure

With one focus of HS3 the improvement of TC modeling, it
would be interesting to see what WRF and HWRF have as
comparable phase space of structural existence

— The need for more robust measures of verification other than intensity
and track
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Part 4: Vortex-environment separation
(Creighton, Hart, Cunningham)

Simulations of genesis often examine the evolution of vorticity and
how the system grows from an upscale cascade

However, classic approaches nearly all involve the separation of the
system from the convective scale through a simple symmetric-
asymmetric approach.

This approach while elegant and simple is flawed, as the system itself
has well-known asymmetries that should be considered part of the
system, not the convective scale:

— Wavenumber one beta-gyres
— Wavenumber one and two asymmetries due to horizontal shear
— Wavenumber one and two asymmetries due to vertical shear

Here we demonstrate a spectral gap in vorticity power spectrum of
WRF simulations that provide an alternative separation point for
storm-vs-convective structure



Vorticity evolution at 200m
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Power spectrum of vorticity at 200m

for all times in the 48hr simulation
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System-scale vorticity using filtering at
24, 29, 34, and 48hr
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