Significance of Convective Processes in the NASA Investigation of Convective Updrafts (INCUS) Mission

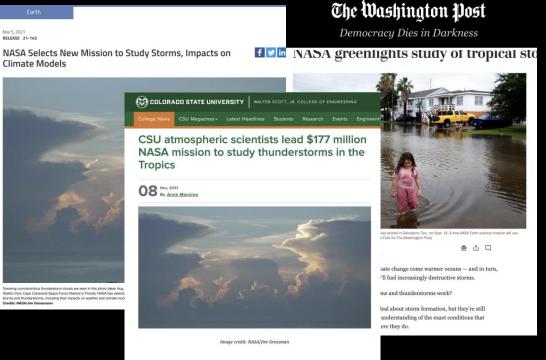
Kristen Lani Rasmussen

INCUS Team: Susan C. van den Heever¹, Ziad Haddad², Simone Tanelli², Graeme Stephens², Derek Posselt², Yunjin Kim², Kristen L. Rasmussen¹, Jennie Bukowski¹, Randy Chase¹, Brenda Dolan¹, Sean Freeman³, Leah Grant¹, Pavlos Kollias⁴, Gabrielle Leung¹, Johnny Luo⁵, Peter Marinescu¹, Mary Morris², Sai Prasanth¹, Rick Schulte¹, Itinderjot Singh¹, Rachel Storer⁶, Ousmane Sy², Hanii Takahashi², and Zhuocan Xu⁴

¹ Colorado State University, Ft Collins CO; ² Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA; ³ University of Alabama, Huntsville; ⁴ State University of New York at Stony Brook, Stony Brook, NY; ⁵ City College of New York, New York, NY; ⁶ UCLA

Image: NASA Earth Observatory (https://www.flickr.com/photos/nasa2explore/14991571998/)

NCUS

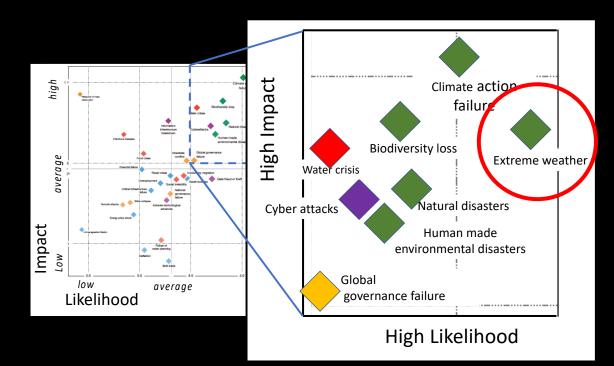

INCUS Selected as Earth Ventures Mission - 3

 INCUS competitively selected in November 2021

INCUS

 "a series of new science-driven, competitively selected, low cost missions that will provide opportunity for investment in innovative Earth science"

This story was adapted from a NASA news release.


NASA has <u>announced</u> a \$777 million Earth science mission led by Colorado State University that will study the behavior of storms in the Tropics, with the goal of better representing these storms in weather and climate models.

Global Focus on Extreme Weather

World Economic Forum (2020)

INCUS - INvestigation of Convective UpdraftS

Overarching Goal:

To understand why, when and where tropical convective storms form, and why only some storms produce extreme weather.

First global systematic investigation into CMF and its evolution within deep tropical convection

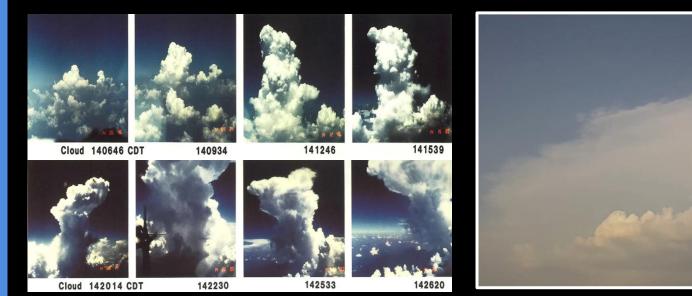
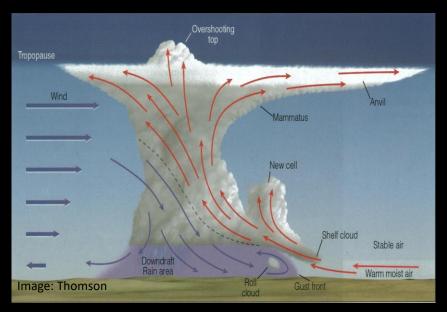

Convective Mass Flux (CMF) = the vertical transport of air and water

Image: NASA Earth Observatory (https://www.flickr.com/photos/nasa2explore/14991571998/)

Convection Evolves Rapidly

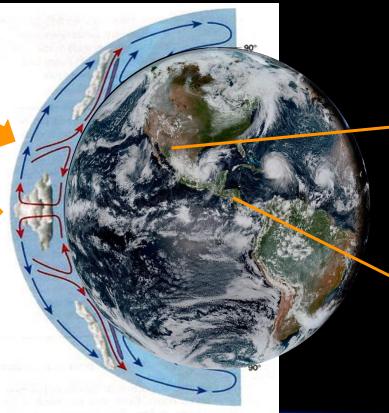
Development of a deep convective cloud over 20 minute time period (images: Ted Fujita)

Convective development - 30 min period


Convective storms vertically transport and mix the atmosphere

Convective Mass Flux – Storm Scales

Rising and sinking motion connects the boundary layer and upper troposphere



Convective Mass Flux – Large Scales

Air sinks establishing dry regions

Air rises within storms establishing moist regions

Dry Regions

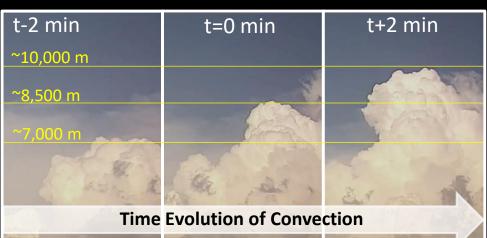
Moist Regions

Long $\Delta t = 120$ secs Resolves weaker updrafts

∆t=120secs

∆t=90secs -

← ∆t=30secs

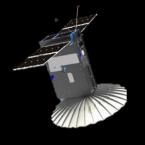

Short $\Delta t = 30$ secs Resolves changes to intense updrafts

Novel Δt Approach: 1. To study different parts of the CMF intensity spectrum 2. To quantify duration of the vertical transport **Evolution of** 3. storm structures

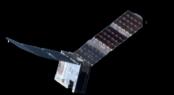
Unique Time Differencing (At) Approach

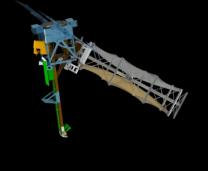


W of 15 m/s corresponds to ~1km/min


Rapidly sampling the cloud state in time provides information on the storm motion and hence CMF

Exploratorium.edu





3 RainCube Ka-band radars

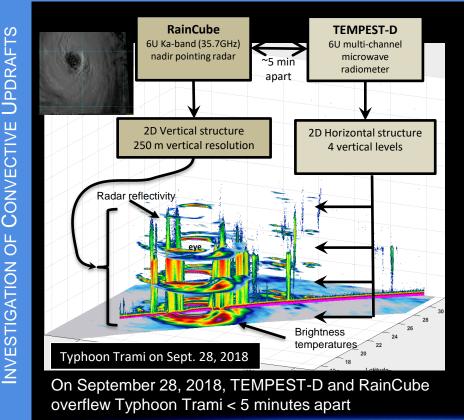
TEMPEST-D mm-wave radiometer

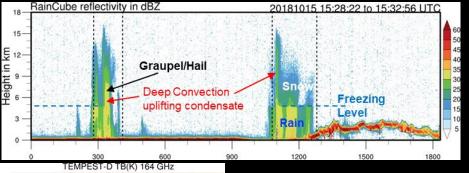
RainCube and TEMPEST-D implemented as tech demos by NASA's ESTO

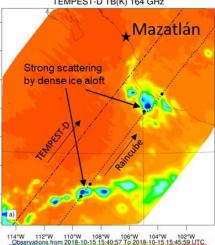
ЦО

NVESTIGATION

Proceedings of IEEE


SPECIAL ISSUE **Small Satellites**


Point of View: How Is the Networked Society Impacting Us? Scanning Our Past: Who Invented the Earliest Capacitor Bank ("Battery" of Leyden Jars)? It's Complicated


Deployable Antenna

INCUS - Unprecedented 3D Views of Storms

Correlated storm measurements from RainCube radar and TEMPEST-D radiometer over Texas, Mexico and Pacific Ocean

Images and Animations: Simone Tanelli, Shannon Brown and Steve Reising

The INCUS Team

Store C

SCIENC	Inst	Role	LEADERSHIP		
George	CSU	ΡI	Susan van den Heever		
Shanno	JPL	DPI	Ziad Haddad		
Pavlos	JPL	PS	Simone Tanelli		
Marl	JPL	PM	Yunjin Kim		
Z. "Joh	01 2				
Geral	Role		INDUSTRY		
Walter	Deployable Antenna		Tendeg		
Derek	Spacecraft, Mission Ops		BCT		
Kristen L.	JPL Engineering Team				
Steve					
Courtney	Inst	Role	DATA CENTER		
Graeme	CIRA	SDC	Phil Partain		

SCIENCE TEAM	Role	Inst
George Huffman	Co-I	GSFC
Shannon Brown	Co-I	JPL
Pavlos Kollias	Co-I	SBU
Mark Kulie	Co-I	NOAA
Z. "Johnny" Luo	Co-I	CCNY
Gerald Mace	Co-I	UTAH
Walter Petersen	Co-I	MSFC
Derek Posselt	Co-I	JPL
Kristen L. Rasmussen	Co-I	CSU
Steve Reising	Co-I	CSU
Courtney Schumacher	Co-I	A&M
Graeme Stephens	Co-I	JPL

INTERNAT COLLABS	Role	Inst
Alessandro Battaglia	Collab	UofL
Richard Forbes	Collab	ECMWF
Christopher Holloway	Collab	UofR
Alain Protat	Collab	ABM
Thota Narayana Rao	Collab	NARL
Rémy Roca	Collab	CNRS
Philip Stier	Collab	UofO
Daniel Vila	Collab	INPE
ADVISORY BOARD	Role	Inst
Christian Jakob	Collab	Monash
John Knaff	Collab	NOAA
Mitchell Moncrieff	Collab	NCAR
David Romps	Collab	Berk
Wei-Kuo Tao	Collab	GSFC

INCUS Science Objectives

Objective 1: ENV \rightarrow CMF

Determine the predominant environmental properties controlling CMF in tropical convective storms

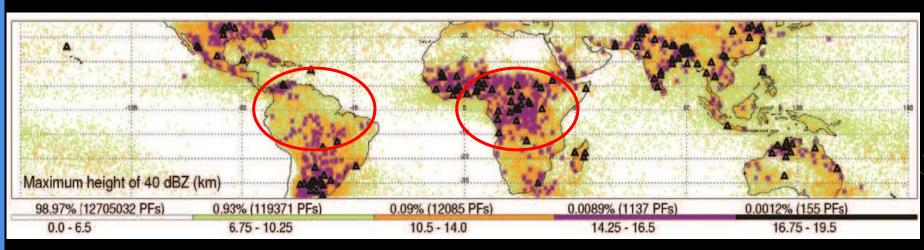
Objective 2: CMF \rightarrow High Clouds

Determine the relationship between CMF and high anvil clouds (critical to cloud-climate feedbacks)

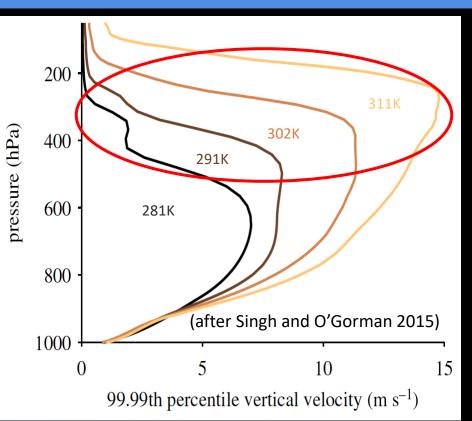
Objective 3: CMF \rightarrow Current and Future Weather

Assess the relationship between CMF and type and intensity of the weather produced

Objective 4: CMF in Models

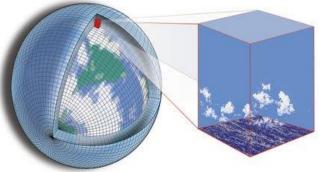

Evaluate these CMF observationally determined relationships in weather and climate models.

Similar Environments but Different Storms

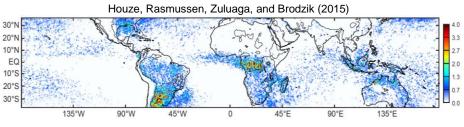

- Environmental properties fundamentally impact CMF but large gaps in our understanding of these controls
- A unified theory of environmental control of CMF does not exist

Impacts of Changing Future Environments

- CMF increases with global warming – largest changes in upper troposphere
- CAPE increases with global warming – but at a much faster fractional rate than CMF



Vertical velocity is challenging to measure and model in convective storms in the current climate

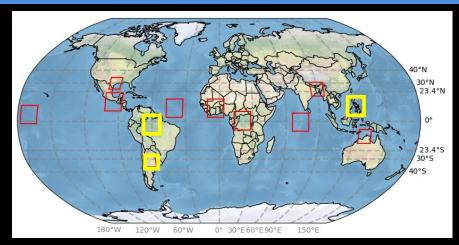

Global Climate Models

Grid spacing: 25-100km Grid domains: Global Parameterized convective mass flux (CMF)

(after Schneider)

GCM parameterizations of CMF often built on NWP outputs

Organized Convection (DJF; 40 dBZ > 1,000 km²)


Despite advances made by spaceborne radar observations (i.e., TRMM, GPM), no current platforms measure vertical velocity from space

Tool: High-Resolution Simulations

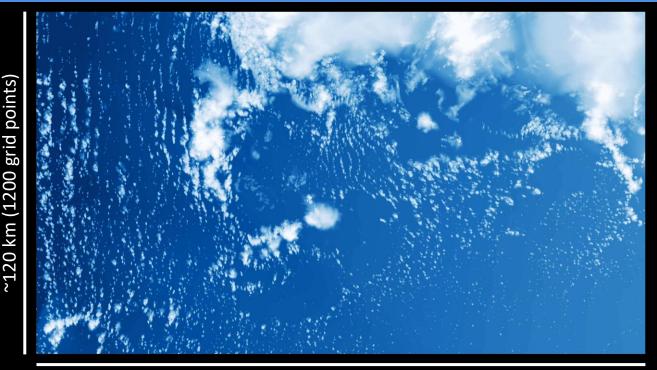
17

- INCUS database of high-resolution simulations of convective systems and updrafts
- Large Eddy Simulation Models
 - Regional Atmospheric Modeling System (RAMS) (Cotton et al., 2003; Saleeby and van den Heever, 2013)
 - Weather Research and Forecasting Model (WRF) (Skamarock et al., 2008)

Simulation details

- Nested grids with innermost grid at 100m horizontal grid spacing
- 230 vertical levels, with maximum vertical grid spacing of 125 m
- 2-moment microphysics
- ERA-5 initial and boundary condition (Hersbach et al., 2020)
- 30s model output of key dynamical and thermodynamic variables
 - 100s of TBs of data (Special file compression H5Z-ZFP; Lindstron 2014)

Tool: High-Resolution Simulations

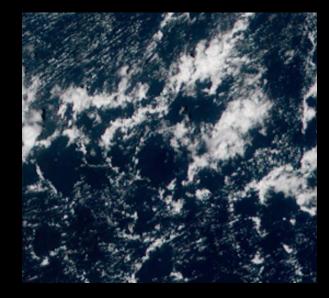


UPDRAFTS CONVECTIVE **NVESTIGATION OF**

Ability to track and study the evolution of convective systems

Example of high-resolution model simulation over the Maritime Continent with 30s output for 1 hour of model time

Simulation and animation courtesy of Nick Falk (CSU)



~210 km (2100 grid points)

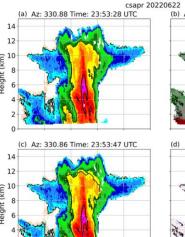
High-Resolution Simulations

CAMP2Ex Simulations

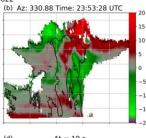
Model Simulation from CAMP²Ex Field Campaign (simulation from Nick Falk)

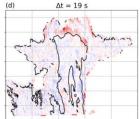
vs.

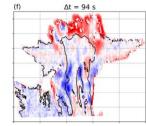
Himawari imagery from 10/9/22 (CIRA RAMMB Slider)

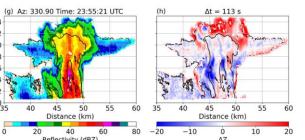


INCUS

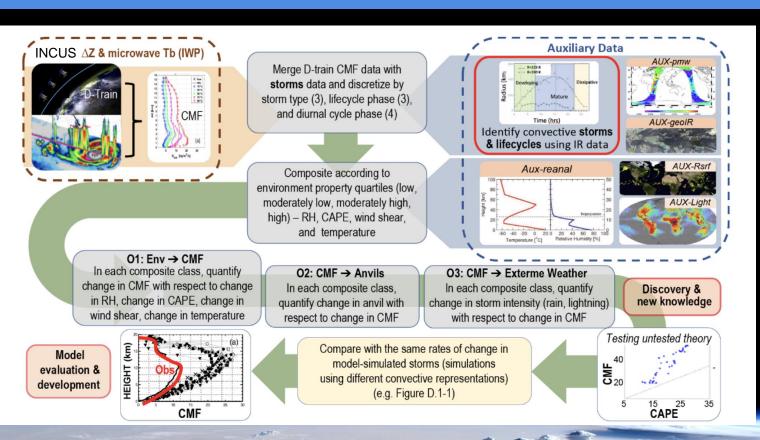



Delta-T Concept in TRACER


- First application of the Delta-T concept in a field campaign
 - Multisensor Agile Adaptive Sampling (MAAS; Kollias et al. 2020) applied to track storms and automatically scan specific parts of storms through their life cycle
 - Can see growth of the storm > 5 km using unique TRACER observations (Dolan et al. 2023)



86 Time: 23:55:02 UT(



Approach to Address INCUS Objectives

INCUS Products

Val IG

IG

IG

GM GM

GM

GM G

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

G

Lead

Tanelli

Tanelli

Brown Stephens

Kahn

Haddad

Kollias

Posselt

Posselt

Haddad

Braun

van den

Heever

Haddad

Stephens

Rasmussen

Luo

LS	Product	Brief Description and Units
CONVECTIVE UPDRAFT	1B-PWR	Received power from each DAR, calibrated and geolocated [dB]*
	1C-Ze	Equivalent radar reflectivity factor (Ze) [dBZ]* and surface normalized radar cross section (0) [dB]
	1B-Tb	Calibrated DMR brightness temperatures (Tb) [K]
	2B-mass	Vertical profile of condensate for each radar profile [kg m 3]*
	2B-mass-rate	Profile of temporal change in condensate for each radar pair [kg m ³ s ¹]*
	2B-Fluxes	Profile of vertical mass flux of air and condensed-water estimated for every detected updraft [kg m 2 s-1]*
	2B-DT	2 min evolution of local advection, condensate, and vertical fluxes in each cloud column
	2A-HD	IWP [kg m ⁻²], derived from the radiometer brightness temperatures 1B-Tb
	AUX-geoIR	Lifecycle from geo-IR, convection type from cold Tbs, anvil size from IR Tb threshold
Ŭ	AUX-reanal	Large-scale environmental variables including convective available potential energy (CAPE), relative
ЧO		humidity (RH), temperature, and wind shear
INVESTIGATION C	AUX-pmw	IWP from mm-wave radiometer constellation
	AUX-GPM-Ka	Coincident (GPM combined retrievals of ice water content) and (DPR Ka Ze)
	AUX-Rsrf	Surface precipitation from Integrated Multi-satellitE Retrievals for GPM (IMERG)
	AUX-Light	Lightning locations and flash rates from ground-based networks and spaceborne sensors
	3A-LIFE	Instantaneous 2B-Fluxes, lightning and geo-IR radiances, labelled by reanalysis data composite class
	3B-CONV	Storm-wide statistics of vertical flux and environmental data, labelled by storm
	3B-CRM	Instantaneous estimates and 2-minute evolution information as in 3A-LIFE, but labelled by storm (to enable
		evaluation of model simulations)
	4-CONV	Convection nowcasting system, machine-learned from 3B-CONV

Final Thoughts

- The INCUS mission will provide the first tropics-wide investigation of the evolution of the vertical transport of air and water by convective storms, one of the most influential, yet unmeasured atmospheric processes
- Exciting opportunity to work with the GHRC DAAC 2+ years ahead of the INCUS launch → build capacity to reach more users with our observations
- Interested in ideas from the group on how to take advantage of this pre-launch phase to maximize the impact of INCUS observations!