A Tour of Lightning With HAMMA

Phillip M. Bitzer

The HAMMA Team:
Hugh Christian, Mike Stewart, Jeff Burchfield, Scott Podgorny, David Corredor, Veronica Franklin, John Hall, and Evgeny Kuznetsov

Special thanks to:
Monte Bateman and Dennis Buechler
Dan Cecil, Henry Everitt and Martin Heimbeck, Chris and Elise Schultz, Brandon and Anne Marie Strickland, and Winfred Thomas Agricultural Research Station
Fundamental question for scientific validation:

What is the best way from the ground to characterize what LIS “sees?”
HAMMA and NALMA
HAMMA
Huntsville Alabama Marx Meter Array

NALMA
North Alabama Lightning Mapping Array
HAMMA
Huntsville Alabama Marx Meter Array
Wideband ~1Hz-500kHz
Sample Rate: 1MHz

NALMA
North Alabama Lightning Mapping Array
Narrowband VHF ~80 MHz
Sample Rate: 20MHz
HAMMA
Huntsville Alabama Marx Meter Array

Wideband ~1Hz-500kHz
Sample Rate: 1MHz

Can identify polarity/type of discharge

NALMA
North Alabama Lightning Mapping Array

Narrowband VHF ~80 MHz
Sample Rate: 20MHz

Provides accurate “maps” of lightning
HAMMA
Huntsville Alabama Marx Meter Array

Wideband ~1Hz-500kHz
Sample Rate: 1MHz

Can identify polarity/type of discharge

NALMA
North Alabama Lightning Mapping Array

Narrowband VHF ~80 MHz
Sample Rate: 20MHz

Provides accurate “maps” of lightning

Both arrays can locate sources via time-of-arrival; HAMMA can also provide energetic information
preliminary breakdown pulse train
early return stroke
subsequent return stroke
Negative CGs produce a preliminary breakdown pulse train with negative polarity pulses.

Flashes with an initial intracloud component begin with positive polarity pulses.
HAMMA is “very” active in the beginning of a flash
HAMMA is “very” active in the beginning of a flash

=> wideband sources are well tuned to identify initiation
What’s the difference in wideband and VHF?
What’s the difference in wideband and VHF?

- Time difference: 680µs
- Distance difference: 318m
- Height difference: 641m
On average, initiation in the wideband and VHF are spatially and temporally similar...

- Time difference: 680µs
- Distance difference: 318m
- Height difference: 641m
On average, initiation in the wideband and VHF are spatially and temporally similar...

...but what does this mean for the initiation mechanism?
Gurevich (1999) predicts that initiation via relativistic runaway breakdown would produce wideband radiation prior to VHF radiation...
Gurevich (1999) predicts that initiation via relativistic runaway breakdown would produce wideband radiation prior to VHF radiation...
Gurevich (1999) predicts that initiation via relativistic runaway breakdown would produce wideband radiation prior to VHF radiation...

Assume:
- initiation height of 6km
- electric field of 175 kV/m

![Graph showing the relationship between electric field and characteristic length](image)
Gurevich (1999) predicts that initiation via relativistic runaway breakdown would produce wideband radiation prior to VHF radiation...

Assume:
- initiation height of 6km
- electric field of 175 kV/m

Implies:
- avalanche length is ~200m
- total length of the high field region is ~2km
Gurevich (1999) predicts that initiation via relativistic runaway breakdown would produce wideband radiation prior to VHF radiation...

Assume:
- initiation height of 6km
- electric field of 175 kV/m

Implies:
- avalanche length is ~200m
- total length of the high field region is ~2km

Further, Coleman and Dwyer (2006) show that the avalanche progresses with a speed of 0.89c
The modeling work provides a testable parameter if relativistic runaway breakdown is responsible for initiation.
The modeling work provides a *testable* parameter if relativistic runaway breakdown is responsible for initiation:

| Model | ~7.5µs | Dwyer, 2003
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Coleman and Dwyer, 2006</td>
</tr>
</tbody>
</table>
The modeling work provides a *testable* parameter if relativistic runaway breakdown is responsible for initiation:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>~7.5µs</td>
<td>Dwyer, 2003</td>
</tr>
<tr>
<td>Measurement</td>
<td>685µs</td>
<td>Coleman and Dwyer, 2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bitzer, 2011</td>
</tr>
</tbody>
</table>
The modeling work provides a testable parameter if relativistic runaway breakdown is responsible for initiation:

<table>
<thead>
<tr>
<th></th>
<th>~7.5µs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td></td>
<td>Dwyer, 2003</td>
</tr>
<tr>
<td>Measurement</td>
<td>685µs</td>
<td>Coleman and Dwyer, 2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bitzer, 2011</td>
</tr>
</tbody>
</table>

Measurements of time lag between initiation in wideband and VHF are generally incompatible with relativistic runaway breakdown!
The modeling work provides a *testable* parameter if relativistic runaway breakdown is responsible for initiation:

<table>
<thead>
<tr>
<th>Model</th>
<th>~7.5µs</th>
<th>Dwyer, 2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement</td>
<td>685µs</td>
<td>Coleman and Dwyer, 2006</td>
</tr>
</tbody>
</table>

Measurements of time lag between initiation in wideband and VHF are generally incompatible with relativistic runaway breakdown!

Further.... simulations *(Dwyer, 2010)* show the region of slow electrons is far too diffuse to yield the required conductivity.
LIS (and by extension, GLM) does not detect *flashes*...
LIS is an **optical event** detector
LIS is an optical event detector

These events can be classified into strokes groups and flashes.
LIS is an **optical event detector**

These events can be classified into strikes groups and flashes.

Validation of LIS/GLM measurements should use instruments sensitive to the part of the lightning discharge which produces optical emission
What is a hit?

3.5 V/m

2.6 V/m
What is a hit?

- Voltage (V): -0.095 to -0.085
- Altitude (km): 0.0 to 8.1
- Time: 4ms

- Voltage (V): -0.120 to -0.060
- Altitude (km): 0.0 to 8.1
- Time: 6ms

- Voltage (V): -0.120 to -0.040
- Altitude (km): 0.0 to 8.1
- Time: 6ms
What is a hit?

Wideband record indicates activity during LIS groups.
What is a miss?

1.1 V/m

0.8 V/m
What is a miss?

1.1 V/m

25ms

0.8 V/m

3ms
What is a miss?

Electric field measurements indicate that LIS missed these strokes because they are not very energetic.
What can VHF tell us?
What can VHF tell us?

Nothing is really unique about VHF sources...
What can VHF tell us?

Nothing is really unique about VHF sources...
What can VHF tell us?

Nothing is really unique about VHF sources...

...in fact, there are LIS groups without any detected VHF sources!
4.9 V/m
Again, the wideband record is active...
Again, the wideband record is active... ...and there are LIS groups without detected VHF sources.
13.9 V/m

10.8 V/m
Without an array of wideband sensors, these might have been misinterpreted as “misses”
Since LIS/GLM does not detect “flashes,” we must find a way to validate what LIS/GLM does detect.
Since LIS/GLM does not detect “flashes,” we must find a way to validate what LIS/GLM does detect.

Clearly, wideband measurements are better correlated to these optical events...
Since LIS/GLM does not detect “flashes,” we must find a way to validate what LIS/GLM does detect.

Clearly, wideband measurements are better correlated to these optical events...

and even suggest there is a lower limit to what LIS can detect!
Fundamental question for scientific validation:

What is the best way from the ground to characterize what GLM "sees?"
Wideband measurements are ideally suited to the processes in lightning that produce optical emission.

Fundamental question for scientific validation:

What is the best way from the ground to characterize what GLM “sees?”