

1

DAWN Doppler Aerosol WiNd lidar

(hurricane) Genesis and Rapid Intensification Processes (GRIP) Science Team Meeting El Segundo, CA

> Michael J. Kavaya NASA Langley Research Center

> > June 6, 2011

Acknowledgements

NASA SMD Ramesh Kakar AITT-07 "DAWN-AIR1" GRIP Jack Kaye \$ Augmentation

NASA SMD ESTO

George Komar, Janice Buckner, Parminder Ghuman, Carl Wagenfuehrer *LRRP, IIP-04 "DAWN" IIP-07 "DAWN-AIR2" Airplane Change & Rephasing*

NASA LaRC Director Office, Steve Jurczyk, *\$ Augmentation* NASA LaRC Engineering Directorate, Jill Marlowe, John Costulis, *\$Augmentation* NASA LaRC Chief Engineer, Clayton Turner, *1 FTE*

> NASA LaRC Science Directorate Garnett Hutchinson, Stacey Lee, and Keith Murray

Project Personnel (DAWN-AIR1, DAWN-AIR2, & GRIP)

*also were DAWN operators on GRIP flights

Dr. Michael J. Kavaya*	PI, LaRC	Overall project coordination including cost and schedule control and reporting. Lead, coherent lidar & data processing	
Dr. Robert A. Atlas	Co-I, NOAA AOML Dir.	Science planning and data analysis	
Dr. Jeffrey Y. Beyon*	Co-I, LaRC	Lead, data acquisition hardware and software	
Garfield A. Creary*	LaRC	Project Manager	
Dr. G. David Emmitt	Co-I, SWA Pres.	Science planning, data analysis, lidar attitude knowledge	
Dr. Grady J. Koch*	Co-I, LaRC	Lead, lidar system overview, lidar receiver design, lidar remote sensing	
Paul J. Petzar*	LaRC	Lead, electronics	
Dr. Upendra N. Singh	Co-I, LaRC	Pulsed laser design, lidar remote sensing	
Bo C. Trieu*	Co-I, LaRC	Lead, mechanical and thermal lidar subsystems	
Dr. Jirong Yu*	Co-I, LaRC	Lead, pulsed laser design, lidar remote sensing	
Dr. Yingxin Bai	SSAI	Laser alignment	
Bruce W. Barnes	LaRC	Software	
Frank L. Boyer	LaRC	Mechanical engineering	
Dr. Joel F. Campbell	LaRC	Data processing	
Dr. Songsheng Chen	LaRC	Laser alignment	
Michael E. Coleman	AMA	Mechanical engineering	
Larry J. Cowen	LaRC	Electronics technician	
Joseph F. Cronauer	SSAI	Scheduling	
Fred D. Fitzpatrick	LaRC	Electronics technician	
Mark L. Jones	LaRC	INS/GPS software	
Nathan Massick	SSAI	Mechanical engineering	
Ed A. Modlin	LaRC	Mechanical technician	
Anna M. Noe	LaRC	Aircraft accommodation	
Don P. Oliver	LaRC	Aircraft accommodation	
Karl D. Reithmaier	SSAI	Mechanical design	
Geoffrey K. Rose	LaRC	Mechanical engineering	
Teh-Hwa Wong	SSAI	Mechanical engineering	
William A. Wood	LaRC	Software	

Frequency Estimation Error

- Abscissa is 7 orders of magnitude of SNR
- Upper ordinate is g/w [-]
- g velocity error of "good" wind estimates [m/s]
- w is return signal spectral width [m/s]
- Wind turbulence $\sigma_{\rm v}$ [m/s] usually dominates value of w
- g/w is constrained between 0.1 and 1.1, only 1 order of magnitude!
- b fraction of wind estimates that are bad
- b is the deciding parameter!
- $\Omega 0.19$ range gate length / pulse length
- M number of data samples

JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY

VOLUME 11 1217

OCTOBER 1994

1218

FREHLICH AND YADLOWSKY

Performance of Mean-Frequency Estimators for Doppler Radar and Lidar

R. G. FREHLICH AND M. J. YADLOWSKY*

Cooperative Institute for Research in the Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado

(Manuscript received 20 May 1993, in final form 14 January 1994)

FIG. 8. The standard deviation g of the "good" ML estimates for mean frequency and the fraction b of "bad" estimates as a function of Φ for $\Omega = 0.5$. The results of the simulation are given by the bestfit empirical models [Eqs. (39) and (40)] for M = 32 (solid), 64 (dotted), and 128 (dashed).

DAWN Ground-Based Wind Performance

at Howard University, Beltsville, MD

sonde on February 24, 2009 at 17:59 local

Wind Speed

• root-mean-square of difference between two sensors for all points shown = **1.06 m/s**

Wind Direction

root-mean-square of difference
between two sensors for all points shown
= 5.78 deg

Nominal Scan Pattern: DAWN During GRIP Campaign

5 different azimuth angles from -45 to + 45° 2 sec shot integration; 2 sec scanner turn time

Trade Off

Fast revisit time to less azimuth angles

VS.

Slower revisit time to more azimuth angles (less cloud blockage?, wind variability studies, measure w)

Note: weather models assimilate LOS winds

Nominal Scan Pattern: DAWN During GRIP Campaign

Actual DC-8 and dropsonde trajectories for 9-1-2010 Dropsonde launched at 17:20:15.49 Zulu Dropsonde hit water 17:33:36.5 Zulu. Fall time = 201 sec

DAWN Data Products All vs. Along-Track Dimension

Near Term

- 1. 5 LOS wind profiles vs. altitude
- 2. 5 LOS relative aerosol backscatter profiles vs. altitude
- 3. Profile of u, v, and w vs. altitude (MAIN PRODUCT)

Farther Term

- 4. Wind turbulence profiles vs. altitude
- 5. Correlations of wind, wind turbulence, and aerosol backscatter
- 6. Assimilation of wind data into NWP models (NOAA)
- 7. Study of near ocean surface velocities (wind, spray, wave, current)
- 8. Multiple profiles of u, v, and w vs. altitude for investigating wind spatial variability (3 out of 5)

GRIP Science Team

9. Fusion of wind data with other GRIP or non-GRIP data for hurricane research (GRIP science team)

- DC-8 taking off from Fort Lauderdale to fly into Earl
- Signal return affected by aerosol backscatter, atmospheric extinction, and1/R² (DC-8 altitude)
- Solid gray not measured
- Note almost complete profiles from 5:00 5:13 pm Zulu!
- Integration is 20 shots or 2 sec. (showing azimuth 0 deg only of 5 azimuths)
- Will measure entire profile next time ...

Why Entire Profiles Next Time

- Post-GRIP: Discovered burn on telescope secondary mirror likely entire GRIP ~ 10 dB loss. Already fixed 4/28/11.
- Post-GRIP: Discovered slight lidar misalignment, at altitude had to cool laser to keep it working. This cooling misaligned the receiver ~ 3 dB loss for most of GRIP. Already fixed.
- Planned 250 mJ, 10 Hz laser but actually 200 mJ, 10 Hz. Already fixed.
- So we effectively flew a 200/10/2 = 10 mJ, 10 Hz laser
- Next time will be 250 mJ, 10 Hz
 - For GRIP data, we still need to:
 - Implement best noise whitening
 - Implement zero padding for multiple shot frequency registration
 - Get 5-axis processing working
 - Combine several scan patterns by altitude bins for handoff to science team

DAWN Horizontal Coverage During GRIP

Science Flight	DC-8 Flight Minutes	DAWN Data Minutes	DAWN to DC-8 Fraction
8/17 Zulu	281.2	176.0	0.63
8/24	437.4	368.9	0.84
8/29-30	502.8	427.4	0.85
8/30	399.9	380.6	0.95
9/1-2	478.1	469.15	0.98
9/2	466.5	444.3	0.95
9/6-7	441.2	407.6	0.92
9/7-8	420.8	395.5	0.94
9/12-13	500.4	463.6	0.93
9/13-14	500.6	421.8	0.84
9/14-15	410.8	334.8	0.82
9/16-17	486.4	475.5	0.98
9/17	485.8	422.3	0.87
9/21	443.9	399.6	0.90
9/22	456.2	400.1	0.88
Total	6711.9	5987.1	0.89

Note: Shutter 7 open minutes < flight minutes, DAWN fractions a little higher

Very roughly 0.367 min/DAWN scan ... total 16,000 scans ... 328 dropsondes

September 1, 2010 Lidar scan number 120 of data folder 16:17:36 17:20:11 – 17:20:31; 2-axis

Latitude = 29.95 N Longitude = 75.75 W GPS Altitude = 10,611 m Over Atlantic Ocean Ground Speed = 224.6 m/s True Heading = 146 degrees NASA

September 7, 2010 Lidar scan number 74 of data folder 18:30:23 19:24:14 – 19:24:34; 2-axis

Latitude = 20.418 N Longitude = 65.7 W GPS Altitude = 9,673 m Over Atlantic Ocean Ground Speed = 218 m/s True Heading = 88.7 degrees September 2, 2010 Lidar scan number 99 of data folder 16:11:47 16:55:14 – 16:55:33; 2-axis

14

Didn't Know Flight Campaigns Were So Fun

Back Up Slides

DAWN Doppler Aerosol WiNd lidar

Fiscal years 2008 - 2010

Compactly and robustly package the 2-micron, Ho:Tm:LuLiF, pulsed laser technology developed at Langley for eventual global wind measurements from earth orbit (Jay's section) Langley has previously demonstrated a world record 1200 mJ of pulse energy with this technology Simulations of the winds space mission indicate a requirement of 250 mJ pulse energy at 5 Hz Laser derating of technology is wise for space missions

> DAWN Transceiver (Transmitter + Receiver) 250 mJ/pulse, 10 pulses/sec. 5.9" x 11.6" x 26.5", 75 lbs.; 15 x 29 x 67 cm, 34 kg

Previous implementation 90 mJ per pulse 5.9" x 11.6" x 26.5"; 75 lbs

Completed DAWN package Small, Robust, **250 mJ per pulse**

DAWN System Integration

29" x 36" x <37" Tall Sealed Enclosure & Integrated Lidar Structure

3/8" Cooling Tube

Newport Scanner (RV240CC-F)

DC8 Port/Window/Shutter

Pulsed Coherent-Detection 2-Micron Doppler Wind Lidar System

DAWN Arriving Palmdale In VALIDAR Trailer

DAWN Optics Mounted in DC-8 Cargo Level

Three Cabin Stations with 2 or 3 Operators

1. Laser Control (L) 2. Data Processing (R)

3. 3 Laser Chillers

Juggling 4 Coordinate Systems

	1	2	3	4
Coordinate System	Aircraft Body Coordinates Forward-Right- Down FRD	North-East-Down Coordinates NED	East-North-Up Coordinates ENU	NED Except "Air Coming From"* "SWD"
Right-Hand, Perpendicular Axes	Axes glued to aircraft body	Axes fixed in air wherever you are	Axes fixed in air wherever you are	No such axes
2 Laser Beam Direction Angles	θ_L, ϕ_L from optics offsets and lidar scanner			
3 Aircraft Rotations		Yaw = Heading, Pitch, Roll from INS/GPS		
3 Aircraft Velocity Components			V _{AE} , V _{AN} , V _{AU} from INS/GPS	
3 Desired Wind Components			V_{WU}	V_{WN}, V_{WE}
Equations	Down = Belly Direction	$V_{AN} = V_{AE}$ $V_{AE} = V_{AN}$ $V_{AD} = -V_{AU}$		$V_{AN^{\star}} = -V_{AN}$ $V_{AE^{\star}} = -V_{AE}$ $V_{AD^{\star}} = V_{AD}$
		11		

Use INS/GPS yaw, pitch, roll to go between these two coordinate systems

Simple equations go between these pairs of coordinate systems

Nominal Scan Pattern: DAWN During GRIP Campaign

Each pair of lines drawn represents shot accumulation consisting of 2 sec and 20 laser shots

Each scan pattern has 5 of these "20 string harps" tilted rectangles. Each "harp string" is approximately a cylinder of 20 cm diameter.

> Example of range gate length, 153.5 m in range, 133 m in height

Wind Measurement Volume and Time Assume DC-8 at 10.6 km or 34.7 Kft; going 144 m/s or 280 knots

Single Laser Pulse

- Light travels 12.242 km slant range to surface in 40.8 microsec (light in atmosphere)
- Beam diameter grows from 15 cm at DC-8 to 30 cm at surface
- Illuminated measurement volume ~ $\pi x (0.1 \text{ m})^2 x$ range gate length ~ 5 m^3
- DC-8 flies forward 6 mm
- Repeats every 100 ms or 14.4 m; along-track duty cycle = 0.04%

LOS Wind Profile

- Consists of 20 laser shots evenly spaced over 2 s and 288 m
- Light in atmosphere time = 20×40.8 microsec = 817 microsec
- Illuminated measurement volume = $20 \times 5 \text{ m}^3 \sim 100 \text{ m}^3$
- Repeats every 4 s and 576 m along track distance; along-track duty cycle = 0.02% or 50%

u,v,w Wind Profile

- Consists of 5 LOS wind profiles at different azimuth angles
- Light in atmosphere time = 5×817 microsec = 4.1 ms
- Illuminated measurement volume = $5 \times 100 \text{ m}^3 \sim 500 \text{ m}^3$
- Repeats every 22 s and 3168 m along track distance
- Along-track duty cycle = 0.02% or 50% or 100%

DAWN Compared to Commercial Doppler Lidar Systems

Coherent detection wind lidar figure of merit*

(Minimum Required Aerosol Backscatter)⁻¹ $\propto E\sqrt{PRF}D^2$

Lidar System	Energy	PRF	D	FOM	FOM Ratio	
Lockheed Martin CT WindTracer	2 mJ	500 Hz	10 cm	4,472	40	/
Leosphere Windcube	0.01	20,000	2.2	7	25,400	
LaRC DAWN	250	10	15	177,878	1	

The LaRC DAWN advantage in FOM may be used to simultaneously improve aerosol sensitivity, maximum range, range resolution, and measurement time (horizontal resolution).

*SNR is not a good FOM for coherent detection wind

29" x 36" x <37" Tall

DAWN Lidar Specifications

Mobile and Airborne NASA DC-8 LaRC VALIDAR Trailer

Lidar System

15-cm diameter off-axis telescope Dual balanced heterodyne detection InGaAs optical detectors Integrated INS/GPS

Pulsed Laser Ho:Tm:LuLF, 2.05 microns 2.8 m folded resonator ~250 mJ pulse energy 10 Hz pulse rate 180 ns pulse duration Master Oscillator Power Amplifier Laser Diode Array side pumped, 792 nm ~Transform limited pulse spectrum ~Diffraction limited pulse spatial quality Designed and built at LaRC

Lidar System in DC-8

Optics can in cargo level Centered nadir port 7 One electronics rack in cargo level Two electronics racks in passenger level Refractive optical wedge scanner, beam deflection 30.12 deg Conical field of regard centered on nadir All azimuth angles programmable

DAWN Operation in GRIP

- DAWN was completed and shipped to Palmdale on 7/15/10 as required, much earlier than the AITT and IIP completion dates of 3/31/11 and 11/30/11
- DAWN operated and collected data for a large fraction of the 25 DC-8 flights (3 shakedown, 1 checkout, 6 ferry, and 15 science flights), and of the 139 total flight hours (113 science hours)
- Many of the flight hours were over or in thick clouds, which blocked the laser beam
- The laser pulse energy decrease from unplanned cooling at altitude was quickly mitigated, and workarounds implemented by the science flights
- Cloud layers revealed in the laser signal were frequently corroborated with the LASE display
- Post GRIP examination revealed a burned telescope secondary mirror which may have cost 10 dB or more in SNR
- Coverage of the atmosphere vertically was probably reduced due to the SNR loss
- Data analysis is proceeding and has already revealed lidar agreement with dropsonde when SNR is high

Telescope & Scanner

coherent lidar uses the same path for transmit and receive transmitted path is shown here.

DAWN Assembly for Optical Alignment, and Pointing Control & Knowledge

DC-8

DC-8 Accommodation

DAWN depicted in DC-8

Scan Pattern During GRIP

Not in the INS/GPS Manual

- Assumes sequence of rotation is yaw, then pitch, then roll
- Assumes sense of rotation is rotating axes rather than rotating vector
- Assumes true north, not magnetic north

1 Direction, 1 Laser Shot Nominal Data Capture Parameters

ADC = 500 Msamples/sec, $\lambda = 2.0535$ microns, zenith angle = 30 deg., round-trip range to time conversion = c/2 = 149.896 m/microsec

NASA

Periodogram: Estimating Signal Frequency After N_P Shot Accumulation One Range Gate, One Realization

 $\int (Mean Periodogram) df = Ave. (Signal + Noise) Power$

DAWN Pulsed Coherent Doppler Wind Lidar Engineering/Science Parameter Tradeoffs (Hold each expression constant for parameter trades)

(1)

36

1. Before Lidar Design and Fabrication

 $\frac{z_{AIRCRAFT}^{2} \Phi_{MIN}^{1,1,1} \left[C_{1} \ln \left(V_{SEARCH} \Delta z 4 / (c \lambda \cos(\theta)) \right) + C_{2} \right]}{ED^{2}T^{2} \left[\cos(\theta) \right]^{1.5} \beta_{MIN}} \sqrt{\frac{N_{AZIMUTHS} V_{H,AIRCRAFT}}{\left(PRF \right) \Delta x \Delta z}}$

2. After Fabrication, Before Data Collection

$$\frac{z_{AIRCRAFT}^{2} \left[C_{1} \ln \left(V_{SEARCH} \Delta z \right) + C_{3} \right]}{T^{2} \beta_{MIN}} \sqrt{\frac{N_{AZIMUTHS} V_{H,AIRCRAFT}}{\Delta x \Delta z}}$$
(2)

Trade: aircraft height and velocity, vertical and horizontal resolution, minimum detectible aerosol level, atmospheric transmission, number of measured azimuth directions, and velocity search space

3. After Data Collection, Before Dissemination

$$\frac{\left[C_{1}\ln\left(V_{SEARCH}\Delta z\right)+C_{3}\right]}{\beta_{MIN}\sqrt{\Delta x\,\Delta z}}$$

(3)

Trade: vertical and horizontal resolution, minimum detectible aerosol level, and velocity search space

 $z = altitude [m] z_{AIRCRAFT} = aircraft altitude$ R = range of lidar to target [m] $R_{MAX} = z_{AIRCRAFT} / \cos(\theta)$ θ = laser beam nadir angle [radians] [30°] Φ = detected coherent photoelectrons per shot per range gate [-] $C_2 \Phi_{MIN}^{1,1,1}$ = minimum usable Φ for 1 shot & 1 m range gate & 1 frequency bin search BW $(N_{SEARCH} = 1)$ $\left\lceil \sqrt{m} \right\rceil$ $N_{SEARCH} = 4\Delta R V_{SEARCH} / (c\lambda) [-]$ ΔR = Data processing range gate length [m] V_{SEARCH} = search band for wind velocity [m/s] $\Delta z = \text{height resolution} = \Delta R \cos(\theta) [m]$ c = speed of light [m/s] $\lambda =$ laser wavelength [m] $\left[2.05 \ 10^{-6} m \right]$ $c\lambda/4 \approx 150; \quad c\lambda/(4\Delta R) \approx 150/\Delta R$ E =lidar laser pulse energy [J] [250 mJ] D = circular receiver collection diameter [m] [0.15 m]T = 1-way atmospheric intensity transmission [-] β = aerosol backscatter coefficient $\left\lceil m^{-1}sr^{-1} \right\rceil$ $N_{AZIMUTHS}$ = number lidars scanner azimuths per repeated pattern [-] $V_{H,AIRCRAFT}$ = Aircraft horizontal velocity [m/s] $\Delta x = along$ -track horizontal resolution (pattern repeat) [m]

GRIP science team input requested for stages 2 & 3. Send comments to michael.j.kavaya@nasa.gov

Wind Measurement Performance

Data Products	A CONTRACTOR OF THE OWNER	Vertical profiles of u, v, w wind field from aircraft to surface, clouds permitting. Profiles of wind turbulence. Profiles of relative backscatter. Wind spatial variability.
Velocity accuracy (m/s)		< 1-2
Vertical resolution (km)		Selectable, typically 133 m
Horizontal integration per LOS (s)	20.00	Selectable, typically 2 s (~460 m)
Nadir Angle (deg)	121	30
Scan Pattern		5 azimuth angles/pattern (selectable) 1 pattern/22 s (~ 5000 m) (processing speed limited)
Range of regard (km)		0 - 12 (DC-8 to surface)

	DAWN on DC-8	3-D Winds Decadal Survey Space Mission
Pulse Energy	0.25 J	0.25 J
Pulse Rate	10 Hz	5 Hz
Receiver Optical Diameter	0.15 m	0.5 m
# Telescopes	1	4
Scanner	Wedge	N/A
Nadir Angle	30 deg	45 deg

- 2-micron Tm:Ho:LuLF laser pulse ~ $\tau = 180$ ns duration ~ 54 m long in atmosphere
- Rotating optical wedge scanner provides possible laser directions on surface of a cone with 30-degree half angle
- Axis of cone is nominally nadir, but changes with aircraft attitude (roll, pitch), and exact mounting
- Location of wind measurement determined by 1) aircraft position, 2) direction of laser, and 3) distance away along laser beam

If t = 0 is firing of pulse, then return signal at t is from ranges c(t/2 – τ/2) to ct/2. For example, τ = 180 ns, t = 10 microseconds, signal is from 1471.98 to 1498.96 m (27 m). The entire 54 m laser pulse contributes to this signal
Time from firing pulse gives distance away, leading to measurement position

- Laser pulse optical frequency = $1.4599296 \ 10^{14} \text{ Hz}$ (Tm,Ho:LuLiF at 2.053472 microns)
- Return signal Doppler shifted by line-of-sight (LOS) lidar platform and wind velocities (+973,960 Hz per m/s of closing velocity, neglecting relativity)
- Optical detector surface mixes return signal with local oscillator (LO) beam to lower signal frequency by 8-14 orders of magnitude
- Maximum design horizontal wind (e.g., 100 m/s): horizontal wind bandwidth = 200 m/s or 194.792 MHz; LOS wind bandwidth = 97.396 MHz (at 30 deg. nadir)
- Pulsed laser to LO frequency offset and/or platform velocity designed to position 0 m/s wind signal at freq. f_0 ; possible signal freq. go from $f_0 48.7$ to $f_0 + 48.7$ MHz
- Return signal digitized at rate high enough to capture highest frequency, $f_0 + 48.7$ MHz, for example $f_s = 500$ Msample/second. Sample spacing = 2 ns
- Also mix LO with outgoing laser pulse, digitize, determine pulse-LO frequency difference, determine t = 0, and store these numbers for each pulse

- Now the data are in a computer 🙂
- Locate correct t = 0 position in data

- Return signal divided into end-to-end time chunks of duration Δt for processing
- Range gate length is $\Delta R = (c\Delta t)/2$. For example, $\Delta t = 1.024$ microseconds, $\Delta R = 153.5$ m [Height resolution is $\Delta R * \cos(\text{beam nadir angle}) \sim \Delta R * 0.866$ at 30 deg.]
- On each range gate, perform a 1024 ns/2 ns = 512 point FFT and calculate periodogram (periodogram is energy content vs. frequency)
- Periodogram output frequency spacing = $1/\Delta T = 0.976562$ MHz (1.003 m/s); highest frequency = $f_S/2 = 250$ MHz (256.7 m/s); number of output complex numbers = 250/0.976562 = 256; number of real output numbers = 2 * 256 = 512
- Repeat for multiple laser pulses and build up an average periodogram for each range gate

- Perform frequency estimation routine on accumulated periodogram for each range gate (e.g., determine frequency of highest peak in periodogram = "peak finding")
- Correct frequency estimate by pulse-LO frequency difference
- Correct frequency estimate by platform (DC-8) velocity projected to LOS direction
- You now have a range (or height) profile of the wind velocity projected to the LOS direction 🙂
- Later probe the same air mass from a different azimuth direction and repeat all of the above for second, different perspective profile of the LOS wind (e.g., first azimuth = 45 deg. and second azimuth = 135 deg.; equal cross-track distances)
- Choice A: assume zero vertical wind and combine the two LOS profiles into a horizontal vector wind profile (magnitude and direction vs. altitude) or
- Choice B: Use a third azimuth direction; assume the wind at the new cross-track distance is the same; calculate the horizontal vector and vertical wind profiles
- You now have a horizontal wind profile 🙂

Heterodyne (Coherent) Detection

 "heterodyne detection can allow measurement of the phase of a single-frequency wave to a precision limited only by the uncertainty principle"
 Michael A. Johnson and Charles H. Townes
 Optics Communications 179, 183 (2000)

Dropsondes

- Airborne Vertical Atmospheric Profiling System (AVAPS)
- Vaisala
- Wind data every 0.5 sec
- $\bullet < 400 \text{ g}$
- 7-cm diameter x 41-cm long
- Square-cone parachute
- Fall velocity = 12 m/s at sea level

September 1, 2010 Lidar scan number 118 of data folder 16:17:36 17:19:27 – 17:19:47; 5-axis

Latitude = 29.95 N Longitude = 75.75 W GPS Altitude = 10,611 m Over Atlantic Ocean Ground Speed = 224.6 m/s True Heading = 146 degrees