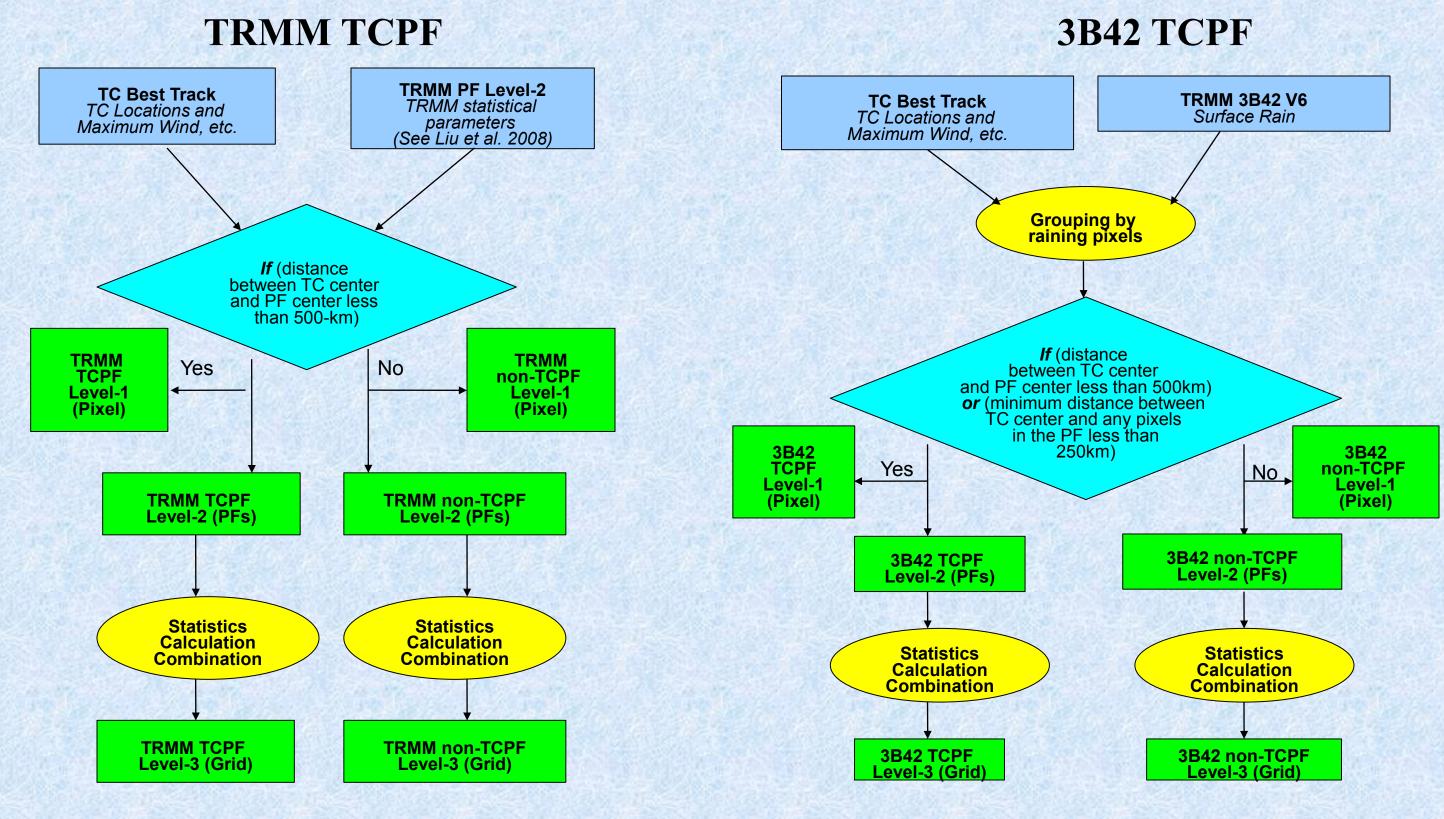


The 13-Year TRMM-Based

Tropical Cyclone Precipitation Feature (TCPF) Database

Haiyan Jiang¹, Chuntao Liu², and Edward J. Zipser²

¹ Department of Earth & Environment, Florida International University, Miami, Florida ² Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

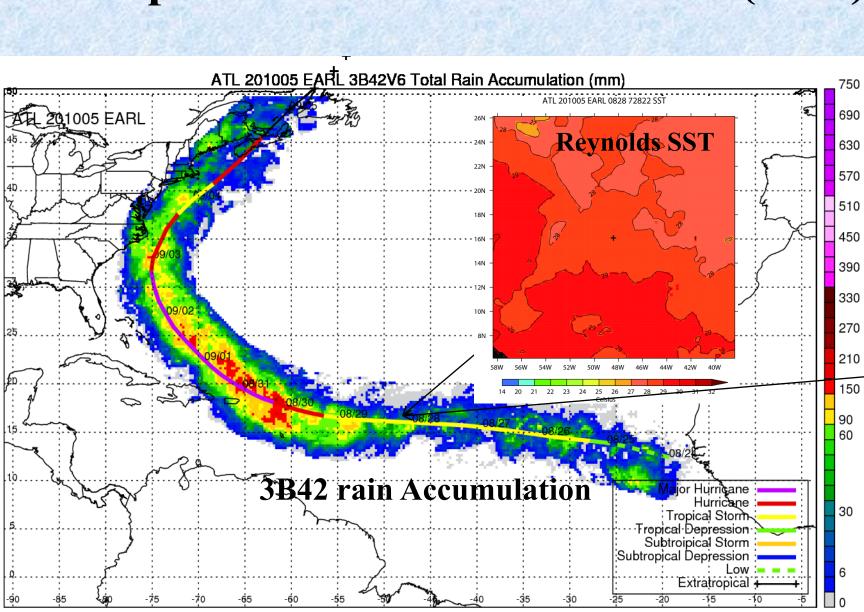


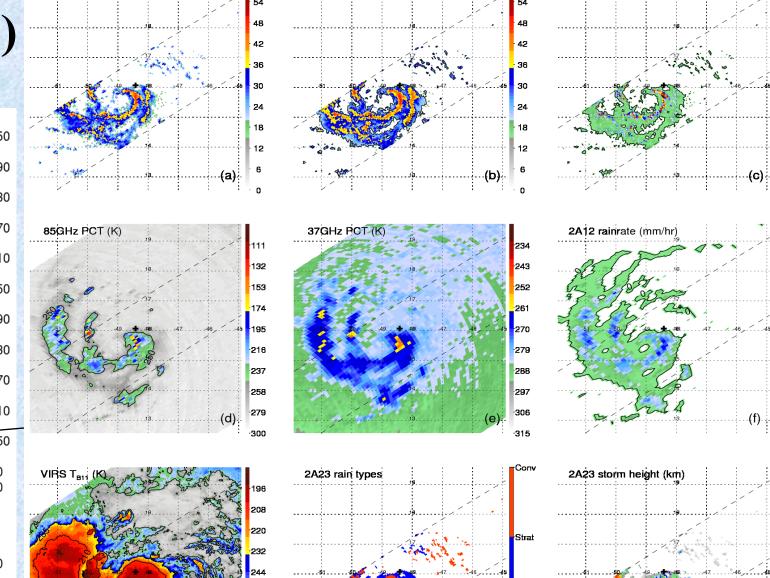
Abstract

The Tropical Rainfall Measurement Mission (TRMM) satellite has provided invaluable data for tropical cyclone (TC) research since December 1997. However, the challenge is how to analyze and efficiently utilize all the information from several instruments on TRMM that observe the same target. In this study, a Tropical Cyclone Precipitation, cloud, and convective cell Feature (TCPF) database has been developed by using observations of the TRMM precipitation radar (PR), Microwave Imager (TMI), Visible and Infrared Scanner (VIRS), Lightning Imaging System (LIS), and the TRMM 3B42 rainfall product. The database is based on an event-based method that analyzes the measurements from multiple sensors. This method condenses the original information of pixel-level measurements into the properties of events, which can significantly increase the efficiency of searching and sorting the observed historical TCs. With both convective and rainfall properties included, the database offers potential to aid the research aiming to improve both TC intensification and rainfall forecasts. Environmental parameters are also added into each TCPF from NCEP and ECMWF INTERIM reanalyses. Sea surface temperature (SST) is added from the daily Reynolds SST data. A Web application based on the TRMM TCPF database has been developed for users to easily find TRMM observations for each TC from December 1997 to December 2010 (13 full years).

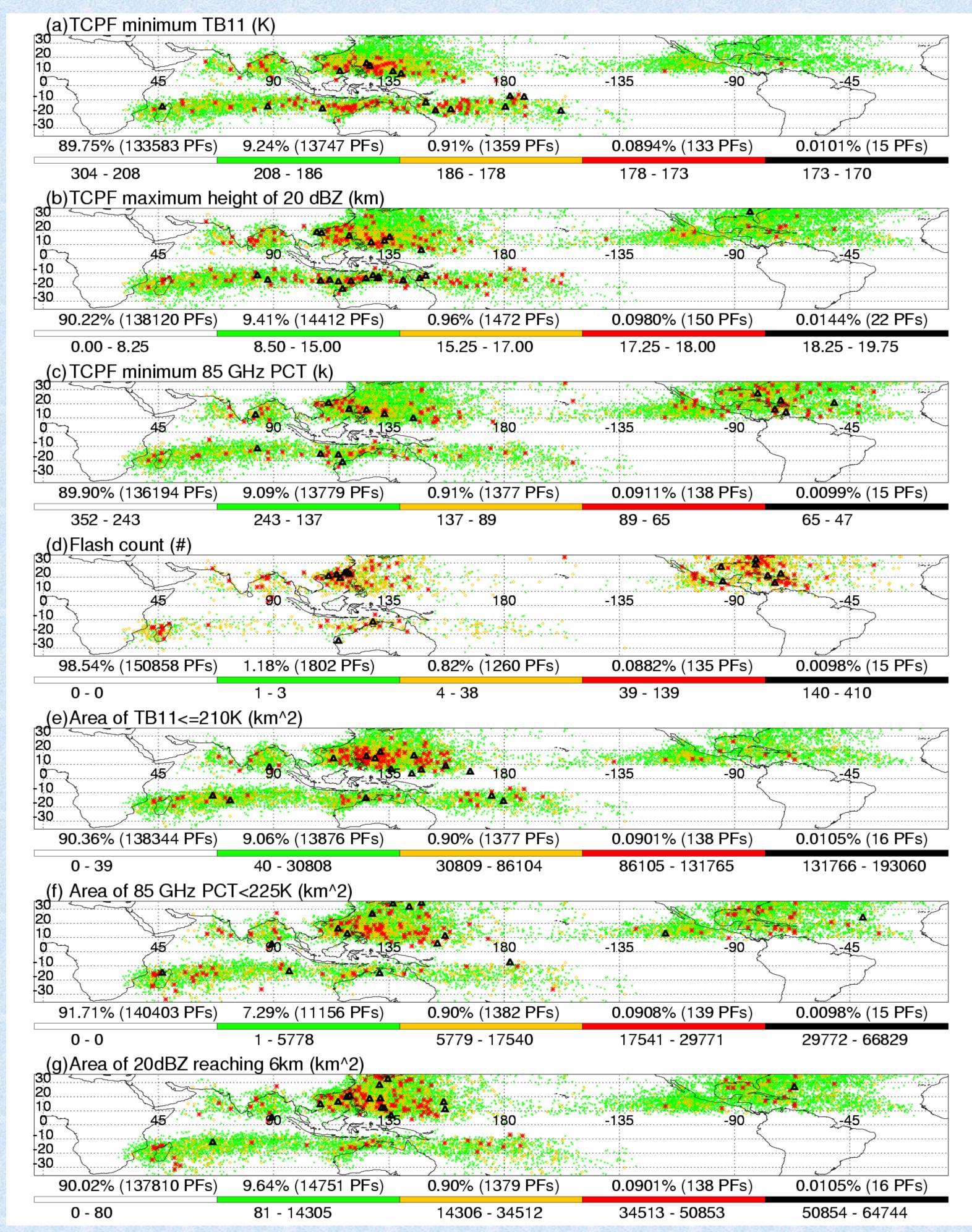
FIU/UU TCPF Database Construction Flow Chart

Definitions of TRMM Precipitation, Cloud, and Convective Features

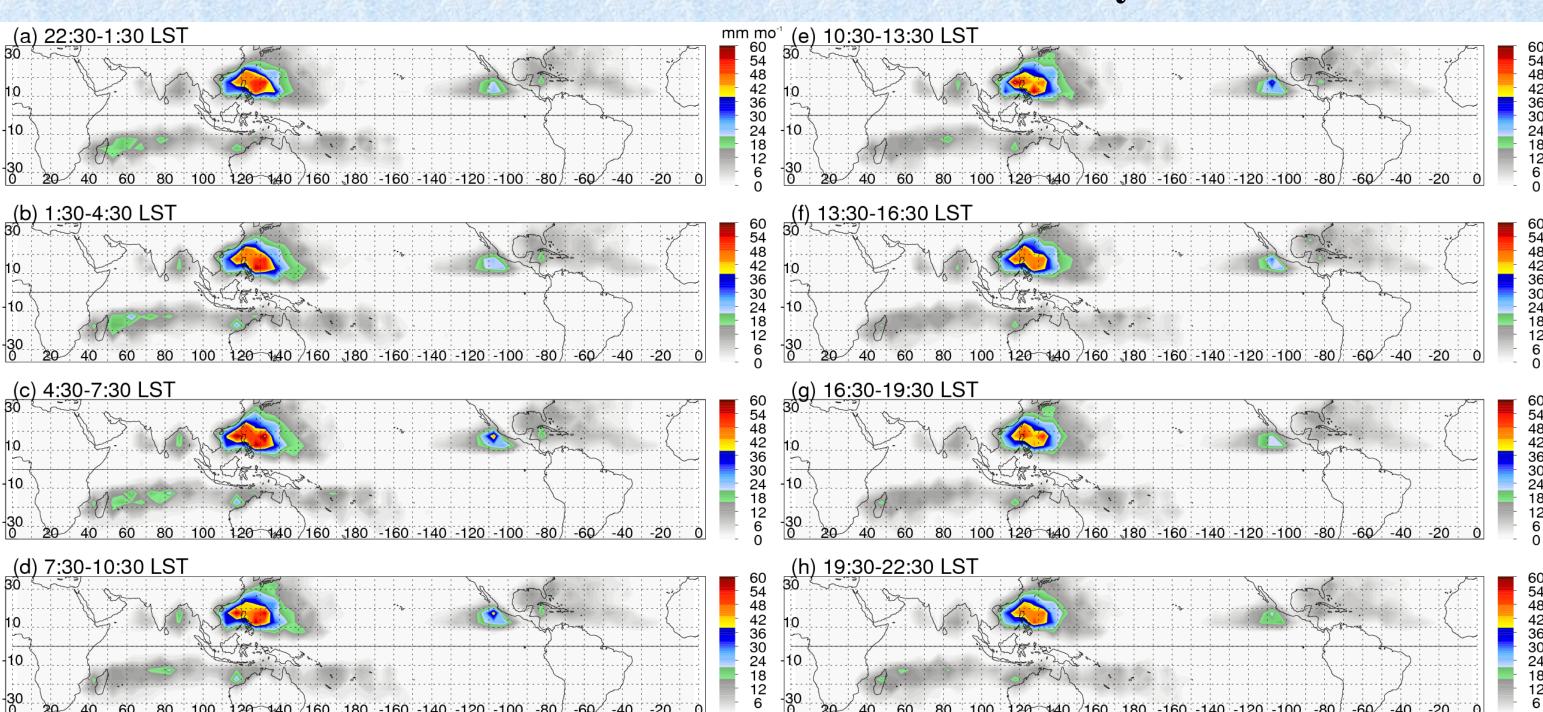

	Acronyms	Definitions	Criteria	Total population	TCPF population
Precipitation Features	RPF	Radar precipitation feature	Pixels with 2A25 rainfall rate > 0	26,523,461	239,375
	RPPF	Radar projection precipitation feature	Pixels with reflectivity >= 20 dBZ anywhere above ground	25,703,571	153,096
	RTPF	Radar/TMI precipitation feature	Pixels with 2A25 or 2A12 rainfall rate > 0	24,447,777	152,792
	TPF	TMI precipitation feature	Pixels with 2A12 rainfall rate > 0	13,286,077	97,246
	TTPF	TMI precipitation feature in TMI swath	Same as above, but in TMI swath	13,649,884	95,956
Cold PCT Features	TPCTF	TMI cold 85-GHz PCT feature with 250K in TMI swath	Pixels with 85 GHz PCT <= 250 K	5,475,411	70,703
	T200F	TMI cold 85-GHz PCT feature with 200K in TMI swath	Pixels with 85-GHz PCT <= 200 K	1,303,750	18,539
Cold Cloud Features	C210F	Cloud feature with 210 K	$VIRS T_{B11} \le 210 K$	1,529,363	39,962
	C235F	Cloud feature with 235 K	VIRS T _{B11} <= 235 K	9,071,722	87,442
Convective Cell Features	CLCONV	2A23 convective cell feature	2A23 convective pixels	15,010,443	211,214
	CL40P	Convective cell feature with radar projection reflectivity greater than 40 dBZ	Pixels with reflectivity >= 40 dBZ anywhere above ground	2,694,447	62,653
	CL6KM30	Convective cell feature with 6-km greater than 30 dBZ	Pixels with 6 km reflectivity >= 30 dBZ	1,354,985	33,188
	CL12KM20	Convective cell feature with 12-km greater than 20 dBZ	Pixels with 12 km reflectivity >= 20 dBZ	352,581	6,437


TRMM TCPF Database Webpage Storm Search Table (http://tcpf.fiu.edu)

TRMM has overpassed 1077 storms in 1997-2010:


# Storms # TRMM overpasses # TC features	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Atlantic		$\frac{14}{248}$ $\frac{1704}{1704}$	12 213 1586	$\frac{15}{203}$ $\frac{1480}{1480}$	14 238 1716	$\frac{12}{217}$ $\frac{1602}$	$\frac{16}{316}$ $\frac{2175}{2175}$	15 314 2336	28 440 3315	10 146 888	15 176 1246	16 270 1897	9 89 657	19 419 4396
East & Central Pacific		13 143 869	9 91 711	18 162 1223	15 136 820	15 180 1156	16 163 1068	12 129 893	15 164 1077	19 221 1461	11 122 836	17 209 1327	18 200 1385	8 135 1361
Northwest Pacific		18 246 1974	23 296 2336	25 354 2783	28 382 2647	24 383 2604	23 403 2721	31 529 3481	24 358 2541	21 332 2206	22 290 2135	27 336 2245	23 338 2484	14 303 3315
North Indian Ocean		8 63 499	5 49 400	$\frac{4}{37}$ 270	3 23 134	4 23 143	3 45 269	5 61 370	6 65 487	6 45 263	6 53 367	6 51 430	5 31 289	5 80 643
South Indian Ocean	$\frac{2}{17}$ $\frac{137}$	21 269 2175	16 215 1828	19 269 2169	17 200 1517	17 209 1536	19 313 2363	18 236 1683	17 180 1180	15 190 1469	20 273 1997	21 299 2321	14 192 1355	10 178 1763
South Pacific	2 18 130	17 244 1715	9 116 771	9 112 816	9 93 664	9 59 347	11 116 814	51 332	8 94 575	11 116 829	8 67 495	5 63 459	9 83 536	8 178 1826

Example: Atlantic Hurricane Earl (2010)



Locations of Deep Convection Events in TCs

Diurnal Variations of 3B42 TC Monthly Rain

Summary

- This study introduces the construction and applications of a TRMM-based TCPF database. This database is built upon the existing UU TRMM precipitation feature database. 1077 TCs are included for six global TC-prone basins from December 1997 to December 2010. TRMM measurements of radar, visible and infrared sensors, passive microwave radiometers, and lightning sensors for TCs are collocated and integrated with TC best track, Reynolds SST, and NCEP and ECMWF INTERIM re-analysis parameters. The TRMM 3B42 rainfall product is also used to build a parallel TCPF dataset. Three levels of TRMM TCPF product are constructed following the same construction concept as in UU TRMM PF database. New convective cell feature definitions are added as a result of the recent update of the parental TRMM database.
- The web application of the database provides a search engine for users to easily find TC overpasses by TRMM, as well as download the level-1 data and best track data and corresponding images.

Future Work

- Potential research applications: 1) comparison of 2A25, 2A12, and 3B42 rainfall retrievals for TCs; 2) regional, seasonal, and diurnal variations of TC size.
- Add NASA MERRA reanalysis parameters into the database.

Reference: Jiang, H., C. Liu, and E. J. Zipser, 2011: A TRMM-based Tropical Cyclone Cloud and Precipitation Feature Database. J. Appl. Meteor. Climatol.,

Acknowledgements: This research is supported by the NASA HSRP program: Ramesh Kakar (NASA/HQ). Thanks to Tie Yuan for adding 2010 storms into the database. Ellen Ramirez helped on identifying landfalling TCs from 1998 to 2004. Michael Peterson has been very helpful on adapting the "Google Earth" web feature to the TCPF database. The authors also would like to thank Dan Cecil, John Molinari, and Deanne Hence for their comments and helps.