The NCAR/NOAA Global Hawk Dropsonde System

Progress and Lessons Learned

Gary A Wick
NOAA ESRL/PSD

Terry Hock
NCAR/EOL
Global Hawk Dropsonde Overview

- Developed through collaborative partnership between NOAA, NCAR, and NASA
- Relies on NCAR/EOL’s long experience with dropsonde development and launching
- Uses AVAPS-3 system and new Global Hawk sonde: smaller and lighter than current dropsondes
- System has 89-sonde and 8-channel capacity
 - 6 channels currently active
 - 72 sonde capacity during WISPAR; 89 by HS3
- D-file returned to ground following drop
- Ground processing enables GTS transmission
What Happened During GRIP?

- Initial installation delayed due to delays in system completion and fabrication of mounting frame
- Installation and ground testing completed successfully
- Successful launch of first sonde at 15,000 ft on 24 Aug
- Sonde jammed in launcher on second launch attempt
 - Problem traced to safety latch
- NCAR unable to field reworked latch based on solenoid design by end of GRIP
 - Modified and alternate designs explored in Boulder
 - Solenoid design pursued for GRIP due to impacts on system electronics
 - Static performance good but could not pass vibration testing
Progress Since GRIP

- System functional!
- NCAR redesigned the safety latch using a cylinder brake
- System passed all required testing and performed very well during WISPAR Experiment
 - 177 sondes deployed over 3 flights
- IR Communication issues resolved during WISPAR campaign
- Demonstrated capability of having all 6 channels active simultaneously
- Good engineering test including extreme Arctic conditions
- Capacity and minor improvements in progress now

Atm. Rivers
11–12 Feb
37 sondes

Winter Storms
3–4 March
70 sondes

Arctic Weather
9–10 March
70 sondes
35 N of AK
Sample Results

Northbound AR Crossing
Arctic Flight, 10–11 March

SSMIS F17 10 Mar 2011, ~0200 UTC
Lessons Learned

- Dropsonde system functional and ready for HS3
- Flexibility exists in dropsonde deployment
 - Location not need to be specified before flight
 - Able to specify lines and regions for dropsonde deployment and alter in flight
 - Working with New York Oceanic may be more challenging – but successful experience with Oakland invaluable
- Workload high for pilots, payload manager, and operators
 - Pilots in communication with ATC prior to each drop
 - Drop location transmitted over radio
 - Multiple radio calls between front and back room
 - Likely not possible for one operator to launch, monitor, and do ASPEN processing
 - Should explore data processing at external location
HS3: A Multi-Year Investigation of Hurricane Formation and Intensity Change

PI: Scott Braun
Deputy PI: Paul Newman
PM: Marilyn Vasques
PS: Ramesh Kakar
Overall Science Objective

- To provide measurements to address key science questions related to storm formation and intensity change, including whether it is primarily a function of the storm environment or storm internal processes. Emphasis on:
 - The structure and role of the SAL, dust transport
 - Genesis processes
 - Convective bursts and wind field changes
 - Warm-core formation and evolution
• Two aircraft, one equipped for the storm environment, one for over-storm flights
• The GHs will not do simultaneous science operations
• Deployments of GHs from the East Coast, likely Wallops Flight Facility in VA
• One-month deployments in 2012, 2013, and 2014, 300 flight hours per deployment

Dots indicate genesis locations. Range rings assume 30–h flights.
Cloud/aerosol lidar (CALIPSO simulator)

Instrument PI: Matt McGill, NASA/GSFC

Data:Profiles of attenuated backscatter, cloud/aerosol boundaries, optical depth, extinction, depolarization

Horiz., vertical resolution = 200 m, 30 m
Instruments: Dropsondes (AVAPS)

- Instrument PI: Gary Wick, NOAA
- Data: High-resolution vertical profiles of temperature, humidity, pressure, winds
- Potentially up to 70–90 drops per flight
- New design has flown on GH
 - Test flights (low, mid, high alt.) completed 2/4/11
 - NOAA science flights ongoing
HS3 Specifics

- Planning for 500 sondes for each year of the experiment (2012, 2013, 2014)
- Transmission of data on GTS a NOAA priority
 - Exploring testing of coincident drops with standard sondes
 - Model impact study using data from WISPAR Winter Storms flight
- Operation likely to transition from NCAR to NOAA during the experiment
Instruments: Scanning High-resolution Interferometer Sounder

- Instrument PI: Hank Revercomb, Univ. Wisconsin
- Data: IR TB spectra; Cloud-top temperature, height; sfc skin temperature; **profiles of temperature and water vapor in clear-sky conditions**
- Horiz., vertical resolution = 2 km, 1–3 km
Instruments: TWiLiTE Wind Lidar

- Instrument PI: Bruce Gentry, NASA/GSFC
- Data: Profiles of backscatter intensity, Doppler velocity, horizontal winds in clear-sky conditions
- Will fly as part of HS3 in 2013–14 only due to NGC schedule, wind pod availability
- Horiz., vertical resolution = ~2 km radial winds, 8 km for retrieved horizontal winds, 250 m
Instruments: High–Altitude MMIC Sounding Radiometer (HAMSR)

- Instrument PI: Bjorn Lambrigtsen, JPL
- Data: Calibrated brightness temperature; vertical profiles of temperature and water vapor and liquid water; precipitation structure
- Horiz., vertical resolution=2km, 1–3 km
Instruments: High-altitude Imaging Wind and Rain Airborne Profiler (HIWRAP)

- Instrument PI: Gerald Heymsfield, NASA/GSFC
- Data: Calibrated reflectivity, Doppler velocity, 3D reflectivity and horizontal winds, ocean surface winds in precipitation free areas
- Horiz., vertical resolution=
 - 1 km, 200 m for dBZ, Doppler velocity
 - 1 km, 500 m for horiz. winds
 - 2 km for surface winds
Instruments: Hurricane Imaging Radiometer (HIRAD)

- Instrument PI: Tim Miller, NASA/MSFC
- Data: Surface wind speed, rain rate, and temperature; brightness temperature fields at 4 frequencies
- Technology similar to NOAA’s SFMR, but scans cross track instead of just nadir
- Horiz. resolution≈1.5–2.5 km

Example from Hurricane Earl flight during GRIP
Extra Slides
Environmental Payload

2012
AV-6 “Environmental” Instrument Configuration

2013–2014
AV-6 “Environmental” Instrument Configuration
Over–Storm Payload

AV-1 “Over Storm” Instrument Configuration

HIRAD

HIWRAP

HAMSР
Sampling of the Environment

- Environmental observing suite unique for examining the SAL
 - Coincident dust, thermodynamics, and wind measurements
 - Sampling in central and eastern Atlantic, where SAL characteristics can be much different than to the west
- Able to reach early genesis regions of the eastern Atlantic not usually accessible

Enhancements to models:
- Validation of global analyses of SAL structure and evolution
- Evaluation of dust transport
- Improved initial conditions for simulations and forecasts
Sampling In–Storm Processes

- Long duration of the GHs enables unprecedented duration of observations in the interior of the storm
 - Different approach from most studies. Previously, short looks ~ twice per day
 - HS3, long looks as much as every other day
 - Combined with high altitude, allows for better description of convective burst cycles

Enhancements to models:
- Validation of precipitation, wind structure
- Evaluation of microphysics parameterizations
- Improved initial conditions for simulations and forecasts
Dropsonde Launcher
AVAPS Electronics
Initial Sonde Specifications

- Size: 4.56 cm dia. x 30.5 cm length
- Mass: ~175 g
- Fall rate: ~12 m/s at surface
- Sensors based on Vaisala RS-92 radiosonde sensor module
 - Temperature: +60° to −90 °C, 0.1 °C resolution
 - Humidity: 0 to 100 %, 1 % resolution
 - Pressure: 1080 to 3 mb, 0.1 mb resolution
 - 2 Hz update rate
- Winds based on OEM GPS receiver and position
 - 4 Hz update rate
- Stable cone parachute design
- Remote control of power on/off and sonde release
- Designed for extreme environmental conditions