Real Time Mission Monitoring

Support of the Tropical Composition, Cloud and Climate Coupling (TC⁴) Experiment

Science Team Meeting 25-27 April 2007

Suborbital Telepresence

Objectives

- Develop/demonstrate low-cost products and services for airborne science
 - Situational awareness, decision support
 - Sensor web: i.e. Instrument interaction/C4I
- Necessary on future autonomous vehicles, but value in application to all platforms
- Onboard system focus: payload needs
 - Acquisition, integration, recording, processing, communications mgmt services
- Terrestrial system focus: operation needs
 - Data processing, fusion, distribution, display, playback services

today

Task Start

AIRSAR INTEX-N AirSAR-

TCSP

INTEX-

NAMM,

^{-C-4}

Next Gel Recorde

Notional Architecture

What is RTMM?

The Real Time Mission Monitor (RTMM) is an interactive visualization application that provides situational awareness and enables adaptive and strategic decision making.

- Utilizes distributed web-based architecture
- Leverages satellite-aircraft communications strategies
- Monitor aircraft tracks
- Access and display satellite, sub-orbital, and surface measurements
- Visualize model output parameters
- Integrated with an easy-to-use freely available visualization package
- Built upon a solid heritage of field campaign real time monitoring applications

Planning, Support, and Analyses

RTMM facilitates:

- Pre-flight planning
- In-flight monitoring and adaptive flight management strategies
- Post-flight analyses, research, and assessments (in playback mode)

User-base and Application

- RTMM is available for use by:
 - Program Managers
 - Mission Scientists
 - Mission Management
 - Research Scientists
 - Educators/Students
 - Science Attentive Public
- RTMM enables real time collaborations
- RTMM capability now available onboard the DC-8 aircraft itself during flights

Example: Operations Support

Satellite FOV & Instrument Data

Example: TC⁴ Simulation

TC4: RTMM Data Sources

- Data Sets planned or available for TC⁴ (we can add to these)
 - Satellite Imagery
 - GOES-E, GOES-10 (vis, infrared, 15 min update, some rapid scan)
 - Satellite & instrument FOVs current and predicted tracks
 - Satellite products (e.g., to support postflight action
 - Model Output
 - GEOS-5, WRF, NCEP, MM5, other
 - Aircraft Instruments
 - Flight tracks (waypoint, real time tracks, etc.)
 - Dropsonde (time/locations and skew-T)
 - Aircraft Instruments: health/status, data, cmd/cntrl (case-by-case)
 (LASE, Dial, AMPR, MTP, SSFR, CAFS, PANTHER, ...)
 - Surface and Balloon Observations
 - Radar (NPOL, SMART)
 - Lightning (Vaisala long range, Costa Rica lightning, WWLLN)
 - TicoSonde
 - Other (NATIVE)
- Playback capabilities available for review and analyses

TC4: Additional Inputs Sought

- Questionnaire has been developed by TC⁴ Suborbital Telepresence and RTMM team to help identify and prioritize additional data acquisition, integration, management and display tasks that might be pursued beyond existing baseline.
- Responses can be given to Richard Blakeslee or Larry Freudinger or emailed to: ssp-global-range-staff@lists.nasa.gov
- URLs for accessing and testing the RTMM will be provided soon to the TC⁴ Science team