1	
2	
3	
4	Evaluation of Satellite-based Upper-troposphere Cloud-top
5	Height Retrievals in Multilayer Cloud Conditions During TC4
6 7	
8 9 10 11	Fu-Lung Chang ⁽¹⁾ , Patrick Minnis ⁽²⁾ , J. Kirk Ayers ⁽¹⁾ , Matthew J. McGill ⁽³⁾ , Rabindra Palikonda ⁽¹⁾ , Douglas A. Spangenberg ⁽¹⁾ , William L. Smith, Jr. ⁽²⁾ , Christopher R. Yost ⁽¹⁾
12	
13 14 15 16	 Science Systems and Applications, Inc., Hampton, Virginia NASA Langley Research Center, Hampton, Virginia NASA Goddard Space Flight Center, Greenbelt, Maryland
17	
18	For submission to J. Geophys. Res. Special Issue on TC4
19	
20	
21 22 23 24 25 26 27	Corresponding author address: Dr. Fu-Lung Chang Mail Stop 420, NASA Langley Research Center, Hampton, Virginia 23681 Email: f.chang@larc.nasa.gov

Abstract

28	Upper-troposphere cloud-top heights (CTHs), restricted to cloud-top pressures (CTPs)
29	< 500 hPa, inferred using four satellite retrieval methods (two improved and two standard
30	ones) are evaluated by applying to the Twelfth Geostationary Operational Environmental
31	Satellite (GOES-12) imagery data during the July-August 2007 Tropical Composition, Cloud
32	and Climate Coupling Experiment (TC4) based in Costa Rica and by comparing with the ER-
33	2 aircraft-based Cloud Physics Lidar (CPL) data taken during 9 days having extensive upper-
34	troposphere cirrus, anvil and convective clouds. The four methods evaluated here are a
35	single-layer CO ₂ -absorption technique (SCO2AT), a modified CO ₂ -absorption technique
36	(MCO2AT) for improvements on both single- and multi-layered clouds, a standard version of
37	the Visible Infrared Solar-infrared Split-window Technique (old VISST), and a new version
38	of VISST (new VISST) recently developed to improve cloud property retrievals. As the CPL
39	detected 89% coverage by upper-tropospheric clouds, the SCO2AT, MCO2AT, old VISST,
40	and new VISST retrieved CTPs < 500 hPa in 76, 76, 69, and 74% of the matched pixels,
41	respectively. Most of the differences are due to very thin cirrus and many sub-visible thin-
42	layer clouds at near tropopause detected only by the CPL. The mean upper-tropospheric
43	CTHs for the 9 days are 14.2 (±2.1) km for the CPL and 10.7 (±2.1), 12.1 (±1.6), 9.7 (±2.9)
44	and 11.4 (±2.8) km for the SCO2AT, MCO2AT, old VISST and new VISST, respectively.
45	Compared to the CPL, MCO2AT CTHs had the smallest biases for semitransparent upper
46	clouds in both single- and multi-layered situations whereas the new VISST CTHs had the
47	smallest biases when upper clouds were opaque and optically thick. The biases for all
48	techniques increased with increasing numbers of cloud layers. The transparency of the upper-
49	layer cloud(s) tends to increase with the numbers of cloud layers.

50 1. Introduction

51 Passive satellite instruments have long been used for monitoring large-scale cloud 52 systems in time and space. Yet, the retrieved cloud properties are still subject to large 53 uncertainties. Retrievals of cloud-top height (CTH), a fundamental cloud property, are often 54 biased by 1.5 km or more, even for single-layered cloud systems [e.g., *Smith et al.*, 2008]. 55 On average, those errors can exceed 3 km for thin upper-tropospheric cirrus clouds that are 56 semitransparent in the infrared wavelengths. In the presence of multilayer clouds, errors in 57 the retrieved CTHs are often greater due to the assumption of a single-layered cloud 58 employed in operational satellite retrieval techniques. That is, the retrieval methods interpret 59 the spectral radiances from a given scene as being the result of interactions among the 60 radiances leaving the surface and scattering, absorption, and emission by the atmosphere and 61 a cloud at one particular altitude. When a thin, high cloud overlaps a low cloud, the retrieved 62 CTH is typically found somewhere between the two clouds, its value depending mainly on the high-cloud optical depth and the separation of the two cloud layers. To provide more 63 64 accurate cloud observations for climate monitoring and the development and validation of 65 cloud process models in weather forecasting, it is necessary to employ a different approach to 66 determine CTH. Active sensors, i.e., cloud lidars and radars, at the surface [e.g., Clothiaux et 67 al., 2000], on aircraft [e.g., McGill et al., 2004], and on satellites [Winker et al., 2007; 68 Stephens and Kummerow, 2007] are ideal for accurately determining the vertical layering of 69 clouds, but are quite limited temporally or spatially. Until the challenges of actively sensing 70 clouds on large spatial and relatively high-resolution temporal scales are overcome, it is necessary to develop and test new techniques for unscrambling the passively sensed 71 72 radiances to retrieve more accurate cloud properties for both single- and multi-layer clouds.

73 Chang et al. [2009] recently developed a modified CO₂-absorption technique 74 (MCO2AT) that uses two spectral channels, centered near 11 and 13.3 µm, to infer the CTH 75 for the highest cloud whether for single- or multilayered conditions. It differs from the 76 traditional single-layer CO₂-absorption technique (SCO2AT) [e.g., Chahine, 1974, McCleese 77 and Wilson, 1976, Smith and Platt, 1978, Menzel et al., 1983] in that it solves for the cloud-78 top radiating temperature using estimates for the effective background radiances, instead of 79 using the clear-sky background radiances for the solution. Because the new approach utilizes 80 the 11- and 13.3-µm channels on several newer operational geostationary satellites, such as 81 the Twelfth Geostationary Operational Environmental Satellite Imager (GOES-12) [Schmit et 82 al., 2001], it has the potential for improving the inference of the upper-troposphere 83 transmissive cloud properties in both single-layer and multilayer situations at relatively high 84 temporal and spatial resolutions. 85 The MCO2AT-inferred upper-troposphere CTH has also been used in combinations 86 with a Visible Infrared Solar-infrared Split-window Technique (hereafter referred as the old 87 VISST) [Minnis et al., 1990, 1993, 1995] to develop a new blended VISST (hereafter 88 referred as the new VISST) for improving the GOES-12 retrievals of upper-tropospheric 89 cloud optical and microphysical properties [Minnis et al., 2009a]. The old VISST retrieves 90 the cloud effective radiating temperature T_{eff} based on the single-layer cloud assumption. The effective cloud height Z_{eff} corresponding to T_{eff} is located somewhere within the cloud, 91 92 lower than the physical cloud top. For optically thick clouds, the old VISST assumes that the 93 top height is equivalent to the effective height. The old VISST employs a reflectance model 94 based on distributions of smooth-faceted hexagonal columns to infer cloud optical depth,

95 which is used to determine the effective radiating temperature from the observed $11-\mu m$

96 brightness temperature. *Minnis et al.* [2009b] also reported that the ozone correction applied 97 to their visible channel retrievals in the old VISST was too large. This over-correction can 98 result in overestimation of the cloud optical depths and, for semi-transparent clouds, an 99 underestimation of CTH. The new VISST differs from the old version in three respects: a 100 reflectance model based on rough-faceted hexagonal columns replaces the smooth-crystal 101 model, the proper ozone correction is applied, and an empirical adjustment is applied to 102 account for the difference between Z_{eff} and CTH. The differences in the results for the old 103 and new VISST versions have not yet been evaluated. 104 Data taken during the NASA-sponsored Tropical Composition, Cloud, and Climate 105 Coupling (TC4) Experiment conducted from Costa Rica during July and August 2007 [Toon 106 *et al.*, 2009] are ideal for evaluating passive CTH retrievals from geostationary satellite data. 107 The Cloud Physics Lidar (CPL) on the NASA ER-2 high-altitude aircraft made highly 108 accurate CTH measurements during all of the TC4 flight hours. The flights were conducted 109 during daylight and sampled the clouds at most local times, thus providing data at most solar

110 zenith angles and at different points in the diurnal cycle of convection.

111 To date, the MCO2AT has only been tested against active sensor retrievals over 112 limited mid-latitude regions [*Chang et al.*, 2009]. Much additional testing of the MCO2AT 113 is needed to ensure that it works well in all conditions, including the high-altitude deep 114 convective conditions in the tropics. The improvements in the VISST have not been 115 quantified for any conditions. Since both the old and new VISSTs were used to analyze the 116 same GOES-12 data during TC4 [Minnis et al., 2009a], it should be possible to determine 117 how accurately the new VISST retrieves ice cloud top heights compared to the old VISST 118 and any CO₂-slicing algorithm using the TC4 data.

119 The primary objective of this paper is to evaluate the upper-troposphere CTHs (< 500 120 hPa) inferred by the MCO2AT and the new VISST relative to the SCO2AT and old VISST, 121 respectively. The TC4 CPL CTH data serve as the ground truth for all of the retrievals. This 122 study focuses on the upper-troposphere clouds comprised of convective towers, optically-123 thick, optically-thin anvils and cirrus, as well as many multilayered clouds. 124 The paper is organized as follows. Section 2 describes the GOES-12 imager and the 125 ER-2 CPL data used in this study. Section 3 describes the different methodologies of the 126 SCO2AT, MCO2AT and the old and new VISST. Section 4 compares the GOES-12 CTH 127 retrievals by using the four techniques, which are evaluated by comparing with the aircraft 128 CPL CTH data obtained during TC4. Analyses and discussions are also provided for optical-129 thin, optical-thick, and multilayer cloud scenarios. The final section gives the summary and 130 conclusions. 131 132 2. Data 133 2.1 GOES-12 data 134 The satellite data used are from the GOES-12 imager that is orbiting at 0°N, 75°W. 135 The GOES-12 imager was used to aid mission planning during TC4 and provide high

temporal-resolution cloud products for the entire TC4 experimental area [*Minnis et al.*, 2009;

137 *Toon et al.*, 2009]. The GOES-12 imager 10.7- and 13.3-μm channels are used in the

138 SCO2AT and MCO2AT for retrieving upper-troposphere cloud-top pressure (CTP) as

presented in Section 3.1. The 0.65-, 3.9-, 10.7- and 13.3-µm channel data are used by both

140 the old and new VISST [Minnis et al., 2009a] for retrieving the cloud effective temperature

141 and cloud-top temperature (CTT) for clouds located at all altitudes as described in Section

5.2. The CTFS from the SCO2AT and MCO2AT and the CTTS from the two VISST
algorithms are converted to CTHs using the profiles of atmospheric pressure, temperature
and height data obtained from the National Centers for Environmental Prediction (NCEP)
Global Forecast System (GFS) dataset [Kalnay et al., 1990; Kanamitsu et al., 1991].
Half-hourly observations of the GOES-12 imagery data taken at approximately 15
and 45 minutes after the UTC hours were obtained during the TC4 experiment in July and
August 2007. The half-hourly GOES-12 imager data and the old and new VISST cloud
products were taken from the NASA Langley TC4 imagery and cloud product archives
[Minnis et al., 2009a; see http://www-angler.larc.nasa.gov/]. Those data have a nominal 4
km \times 3.2 km spatial resolution at nadir. The original scanning resolution is about 4 km \times 2.3
km (north-south direction \times east-west direction) for the 10.7- μm channel and about 8 km \times
2.3 km (north-south × east-west) for the 13.3- μ m channel.
2.2 CPL data
2.2 CPL data The NASA ER-2 flew at an altitude of 20 km, well above the highest cloud tops. The
2.2 CPL data The NASA ER-2 flew at an altitude of 20 km, well above the highest cloud tops. The CPL is an active lidar used on high-altitude aircraft to measure attenuated backscatter lidar
2.2 CPL data The NASA ER-2 flew at an altitude of 20 km, well above the highest cloud tops. The CPL is an active lidar used on high-altitude aircraft to measure attenuated backscatter lidar signals at 532- and 1064-nm wavelengths and is highly sensitive to optically-thin cirrus and
2.2 CPL data The NASA ER-2 flew at an altitude of 20 km, well above the highest cloud tops. The CPL is an active lidar used on high-altitude aircraft to measure attenuated backscatter lidar signals at 532- and 1064-nm wavelengths and is highly sensitive to optically-thin cirrus and sub-visible clouds [<i>McGill et al.</i> , 2002]. The CPL retrieves cloud and aerosol backscatter
2.2 CPL data The NASA ER-2 flew at an altitude of 20 km, well above the highest cloud tops. The CPL is an active lidar used on high-altitude aircraft to measure attenuated backscatter lidar signals at 532- and 1064-nm wavelengths and is highly sensitive to optically-thin cirrus and sub-visible clouds [<i>McGill et al.</i> , 2002]. The CPL retrieves cloud and aerosol backscatter and optical properties at 1 s (~200 m along track) horizontal resolution and 30-m vertical
2.2 CPL data The NASA ER-2 flew at an altitude of 20 km, well above the highest cloud tops. The CPL is an active lidar used on high-altitude aircraft to measure attenuated backscatter lidar signals at 532- and 1064-nm wavelengths and is highly sensitive to optically-thin cirrus and sub-visible clouds [<i>McGill et al.</i> , 2002]. The CPL retrieves cloud and aerosol backscatter and optical properties at 1 s (~200 m along track) horizontal resolution and 30-m vertical resolution. The CPL retrievals provide top and bottom heights of all layers detected by the
2.2 CPL data The NASA ER-2 flew at an altitude of 20 km, well above the highest cloud tops. The CPL is an active lidar used on high-altitude aircraft to measure attenuated backscatter lidar signals at 532- and 1064-nm wavelengths and is highly sensitive to optically-thin cirrus and sub-visible clouds [<i>McGill et al.</i> , 2002]. The CPL retrieves cloud and aerosol backscatter and optical properties at 1 s (~200 m along track) horizontal resolution and 30-m vertical resolution. The CPL retrievals provide top and bottom heights of all layers detected by the lidar up to a maximum of 10 layers with accumulated optical depths < ~4. To determine
2.2 CPL data The NASA ER-2 flew at an altitude of 20 km, well above the highest cloud tops. The CPL is an active lidar used on high-altitude aircraft to measure attenuated backscatter lidar signals at 532- and 1064-nm wavelengths and is highly sensitive to optically-thin cirrus and sub-visible clouds [<i>McGill et al.</i> , 2002]. The CPL retrieves cloud and aerosol backscatter and optical properties at 1 s (~200 m along track) horizontal resolution and 30-m vertical resolution. The CPL retrievals provide top and bottom heights of all layers detected by the lidar up to a maximum of 10 layers with accumulated optical depths < ~4. To determine whether the CPL-detected upper-tropospheric cloud is above the 500-hPa pressure level, the
2.2 CPL data The NASA ER-2 flew at an altitude of 20 km, well above the highest cloud tops. The CPL is an active lidar used on high-altitude aircraft to measure attenuated backscatter lidar signals at 532- and 1064-nm wavelengths and is highly sensitive to optically-thin cirrus and sub-visible clouds [<i>McGill et al.</i> , 2002]. The CPL retrieves cloud and aerosol backscatter and optical properties at 1 s (~200 m along track) horizontal resolution and 30-m vertical resolution. The CPL retrievals provide top and bottom heights of all layers detected by the lidar up to a maximum of 10 layers with accumulated optical depths < ~4. To determine whether the CPL-detected upper-tropospheric cloud is above the 500-hPa pressure level, the CPL uppermost CTHs are also converted to corresponding CTPs using the NCEP GFS

166 **3. Techniques**

3.1 The CO2ATs

168 Both CO₂-absorption techniques (CO2ATs), i.e., SCO2AT and MCO2AT, use the 169 radiance pair from the 10.7-um window and the 13.3-um CO₂-absorption channel to infer 170 upper-troposphere CTH. The CO2AT is based on the well-mixed nature of CO_2 gas in the 171 upper troposphere. The difference between the 10.7- and 13.3-µm upwelling radiances due 172 to the presence of an upper-troposphere cloud is thus used to infer the cloud-top pressure 173 (CTP). However, CO2AT is only useful for retrieving upper-troposphere clouds because the 174 13.3-µm data loses its sensitivity to low clouds, owing to an increased CO₂-absorption path length from the top of atmosphere (TOA) to the low cloud top. As such, the CO2AT is 175 176 conservatively restricted to only the CTH retrieved above 500-hPa level (\sim 5.7 km in altitude) 177 to maximize the signal-to-noise ratio and to avoid the effects of variable CO₂-gas 178 concentrations in the lower troposphere. 179 The SCO2AT applied to the GOES-12 imager data follows the radiance ratio methods 180 described by McCleese and Wilson [1976], Smith and Platt [1978] and Wielicki and Coakley 181 [1981]. For simplicity, let us use the superscript 11 for the 10.7-um channel and superscript 182 13 for the 13.3-µm channel. 183 By assuming cloud reflectance to be negligible at both the 10.7- and 13.3-µm channels, the satellite-observed radiances R_{obs}^{11} and R_{obs}^{13} for the two channels can thus be 184 185 written as

186 $R_{obs}^{11} = \varepsilon_c^{11} R_{ovc}^{11} + (1 - \varepsilon_c^{11}) R_{clr}^{11}$ (1)

187
$$R_{obs}^{13} = \varepsilon_c^{13} R_{ovc}^{13} + (1 - \varepsilon_c^{13}) R_{clr}^{13}.$$
 (2)

188 where $\varepsilon_c = e_c A_c$ denotes an effective cloud emissivity with e_c being the cloud emissivity

and A_c being the cloud cover fraction of the imager pixel, R_{ovc} denotes the overcast radiance as $\varepsilon_c = 1$, and R_{clr} denotes the clear-sky radiance as $\varepsilon_c = 0$.

191 The clear-sky radiances
$$R_{clr}^{11}$$
 and R_{clr}^{13} for specified surface temperature T_g and

192 surface pressure P_g are given by

193
$$R_{clr}^{11}(T_g|P_g) = B^{11}(T_g)\xi^{11}(P_g) + \int_{P_g}^0 B^{11}(T(P))\frac{d\xi^{11}(P)}{d\ln P}d\ln P$$
(3)

194
$$R_{clr}^{13}(T_g|P_g) = B^{13}(T_g)\xi^{13}(P_g) + \int_{P_g}^0 B^{13}(T(P))\frac{d\xi^{13}(P)}{d\ln P}d\ln P, \qquad (4)$$

195 where B^{11} and B^{13} denote the Planck functions and $\xi^{11}(P)$ and $\xi^{13}(P)$ denote the

196 transmittances between the TOA (P = 0) and pressure-level P for the two associated channels.

197 Similarly, the overcast radiances R_{ovc}^{11} and R_{ovc}^{13} for specific cloud-top temperature T_c and

198 cloud-top pressure P_c are give by

199
$$R_{ovc}^{11}(T_c|P_c) = B^{11}(T_c)\xi^{11}(P_c) + \int_{P_c}^{0} B^{11}(T(P))\frac{d\xi^{11}(P)}{d\ln P}d\ln P$$
(5)

200
$$R_{ovc}^{13}(T_c|P_c) = B^{13}(T_c)\xi^{13}(P_c) + \int_{P_c}^{0} B^{13}(T(P))\frac{d\xi^{13}(P)}{d\ln P}d\ln P.$$
(6)

The computations in Eqs. (3)-(6) used the atmospheric profile data obtained from the NCEP
GFS dataset [*Kalnay et al.*, 1990; *Kanamitsu et al.*, 1991] and the MODTRAN4 radiative
transfer code [*Berk et al.*, 1999].

To solve for
$$T_c | P_c$$
 with specified $T_g | P_g$, ratios of (1) and (2) are manipulated to yield

205
$$\frac{R_{obs}^{13} - R_{chr}^{13}(T_g|P_g)}{R_{obs}^{11} - R_{chr}^{11}(T_g|P_g)} = \frac{\varepsilon_c^{13}(R_{ovc}^{13}(T_c|P_c) - R_{chr}^{13}(T_g|P_g))}{\varepsilon_c^{11}(R_{ovc}^{11}(T_c|P_c) - R_{chr}^{11}(T_g|P_g))}.$$
(7)

The solution of $T_c|P_c$ can thus be inferred by searching for the calculations of R_{ovc}^{11} and R_{ovc}^{13} that best satisfy (7) for the satellite-observed pair, R_{obs}^{11} and R_{obs}^{13} . The SCO2AT-inferred CTH is then derived by comparing the inferred $T_c|P_c$ to the atmosphere temperature/pressure and height profile data. Note that previous studies often assumed $\varepsilon_c^{11} \cong \varepsilon_c^{13}$ in Eq. (7). Here the relation between ε_c^{11} and ε_c^{13} is determined based on radiative transfer calculations [*Chang et al.*, 2009].

The MCO2AT is a modified version of the SCO2AT. As the SCO2AT assumes clouds are single-layered with a clear-sky background, the MCO2AT determines the effective background radiances R_{ebg}^{11} and R_{ebg}^{13} and their corresponding effective background temperature T_{ebg} and pressure P_{ebg} for the lower cloud in a multilayer cloud situation or for the clear-sky background for single-layer clouds. As such, Eq. (7) is modified in the MCO2AT by

218
$$\frac{R_{obs}^{13} - R_{ebg}^{13}(T_{ebg}|P_{ebg})}{R_{obs}^{11} - R_{ebg}^{11}(T_{ebg}|P_{ebg})} = \frac{\varepsilon_c^{13}(R_{ovc}^{13}(T_c|P_c) - R_{ebg}^{13}(T_{ebg}|P_{ebg}))}{\varepsilon_c^{11}(R_{ovc}^{11}(T_c|P_c) - R_{ebg}^{11}(T_{ebg}|P_{ebg}))},$$
(8)

219 where

220
$$R_{ebg}^{11}(T_{ebg}|P_{ebg}) = B^{11}(T_{ebg})\xi^{11}(P_{ebg}) + \int_{P_{ebg}}^{0} B^{11}(T(P))\frac{d\xi^{11}(P)}{d\ln P}d\ln P$$
(9)

221
$$R_{ebg}^{13}(T_{ebg}|P_{ebg}) = B^{13}(T_{ebg})\xi^{13}(P_{ebg}) + \int_{P_{ebg}}^{0} B^{13}(T(P))\frac{d\xi^{13}(P)}{d\ln P}d\ln P.$$
(10)

222 To solve for $T_c | P_c$ using Eq. (8), the MCO2AT needs to determine $T_{ebg} | P_{ebg}$ using an

iterative algorithm as illustrated in Figure 1. In the iterative algorithm, the solution of a

224 SCO2AT-retrieved $T_c | P_c$ is first obtained using Eq. (7). If the SCO2AT $P_c < 500$ hPa, it

proceeds to the MCO2AT iterative algorithm to estimate new $T_{ebg}|P_{ebg}$ and infer new $T_c|P_c$ using Eq. (8). Note that the inferred effective background radiance R_{ebg}^{11} is bound between the clear-sky radiance R_{clr}^{11} and the midway radiance $(R_{clr}^{11} + R_{obs}^{11})/2$ whereas the inferred $T_c|P_c$ is bound by the tropopause [*Chang et al.*, 2009].

3.2 The VISSTs

230 The VISST matches theoretically computed radiances with the GOES-12 imager-231 observed radiances at the 0.65-, 3.9-, 10.7-, and 13.3-um channels to retrieve cloud 232 parameters such as optical depth (OD), effective particle size, water phase, emissivity, 233 effective cloud temperature, pressure and height, etc. In the old VISST [Minnis et al., 1995, 2009b], for clouds with OD > 6, the CTH is inferred from the value of T_{eff} that is retrieved 234 from the 10.7- μ m channel with atmospheric correction. For clouds with OD \leq 6, cloud 235 236 transmissivity and emissivity are taken into account to infer the effective cloud temperature. 237 Empirical formulae are then applied to determine the CTHs for thin clouds, where the CTH and cloud temperature are related using the temperature and height profile data. 238 239 In the new VISST, as detailed in *Minnis et al.* [2009a], the visible-channel ozone

transmittance is reduced by 12% and the rough ice crystal models of *Yang et al.* [2008] are used in place of the smooth models used in the old VISST [*Minnis et al.*, 1998]. The former correction should cause OD to decrease by a few percent, while the latter change can cause either an increase or decrease in OD, depending on the viewing and illumination angles. The third correction is based on an empirical model [*Minnis et al.*, 2008] that accounts fro the differences between Z_{eff} and CTH for optically thick clouds. Thus, most of the corrections should result in slightly smaller retrieved optical depths and higher CTHs.

248 **4. Results**

249

4.1 Comparisons of Uper-troposphere CTHs

250 The CPL and GOES-12 matched data are analyzed from 9 separate ER-2 flight days 251 during the July-August 2007 TC4 experiment. Data from four other days (July 14, 25, 29) 252 and August 9) are not included here because they were taken during transit flights or flights 253 dedicated to measuring boundary layer clouds and/or aerosols. The CPL uppermost CTHs 254 were averaged every 10 s. The averaging time of 10 s implies a ground track of ~ 2 km since 255 the ER-2 traveled at a speed of ~200 m/s. Each 10-s averaged CPL CTH was matched with 256 collocated GOES-12 pixel data from the two closest imagery scan times, one scanned before 257 and another scanned after the CPL time. Since the GOES-12 imager scans at 30-min 258 intervals, the collocated GOES-12-retrieved CTHs from the two images scanned before and 259 after were then linearly interpolated in time to match the CPL CTH observation. However, 260 when only one image pixel had retrieved CTH, that pixel CTH was treated as a match to the 261 CPL data if the observing time difference between the image pixel and CPL data was less 262 than 3 minutes. If no CTH was retrieved from either the previous or following images, the 263 CPL data were not used. The different times and resolutions of the GOES-12 and CPL cloud 264 data make the comparisons of CTHs from the two measurements somewhat problematic 265 because a cloud could appear or disappear between the 30-min intervals. 266 Table 1 shows the number of matched CTH data points obtained by the CPL, 267 CO2ATs, and the VISSTs from the nine flights. It shows the total numbers of matched data 268 (N_{match}) and how many of the matched data had a valid CTP < 500 hPa inferred by the CPL 269 (N_{CPL}) , CO2ATs (N_{CO2AT}) , and old $(N_{\text{VISST-old}})$ and new VISST $(N_{\text{VISST-new}})$. Also, the numbers in parentheses for N_{CO2AT}, N_{VISST-old} and N_{VISST-new} indicate how many data had a 270

271	retrieved CTP < 500 hPa, but the CPL had not detected that, which could indicate data
272	mismatches or overestimations by the individual satellite techniques. In general, from
273	comparisons of $N_{\rm match}$ and $N_{\rm CPL}$, the CPL detected large percentages of CTP < 500 hPa
274	(four days had ~100%). Based on N_{CO2AT} , the CO2ATs retrieved large percentages (75-98%)
275	of those upper-troposphere clouds (CTP < 500 hPa), except for July 19 (~49%) and August 6
276	(~14%). The two versions of VISST also retrieved consistently large percentages of CTP $<$
277	500 hPa, where the new VISST showed good agreement with the CO2ATs and the old
278	VISST showed about 10% less than those from the new VISST. There were less than 0.3%
279	of the data where the CPL data had no $CTP < 500$ hPa, but the CO2ATs and VISSTs had
280	some CTPs < 500hPa as indicated by the numbers in the parentheses.
281	Figure 2 illustrates the matched CTHs inferred by the new VISST (blue), old VISST
282	(green), MCO2AT (red) and SCO2AT (purple) overlaid on the ER-2 CPL vertical cloud
283	mask data for 4 flight days. Each figure shows a 3-hour period of matched data obtained
284	during the ER-2 flights on August 8 (Fig. 2a), July 31 (Fig. 2b), July 17 (Fig. 2c) and July 19
285	(Fig. 2d), which were selected to demonstrate different cloud scenarios.
286	During August 8 (Fig. 2a), the ER-2 flew over several convective cores and anvils.
287	Comparing the data during this flight (12:40:45-17:40:16) when the CO2ATs had valid CTH
288	retrievals (CTP < 500 hPa), the CPL measured a mean (±standard deviations) CTH of 13.9
289	(\pm 1.4) km whereas the MCO2AT, SCO2AT, new VISST, and old VISST inferred 12.3 (\pm 1.1)
290	km, 10.7 (±1.8) km, 11.4 (±2.5) km, and 9.7 (±2.4) km, respectively. Generally, good
291	agreement among the CPL, MCO2AT, and new-VISST CTHs was found near the convective
292	cores, but away from the cores their CTH differences increased as the anvil cloud optical
293	depths decreased. The MCO2AT CTHs were sometimes a few kilometers lower and the

294 new-VISST CTHs were sometimes much lower. On average, when compared with the

295 MCO2AT, the new-VISST CTHs were lower by 0.9 km, the old-VISST CTHs were lower by

296 2.6 km, and the SCO2AT CTHs were lower by 1.6 km.

297 On July 31 (Fig. 2b), the ER-2 flew over some geometrically-thick anvils formed by a

298 large mesoscale complex in the Pacific just off the coast of Costa Rica. The data from this

flight (13:15:56-17:19:40) show that when the CO2ATs had valid CTH retrievals, the CPL

300 measured a mean CTH of 16.3 (±0.3) km whereas the MCO2AT, SCO2AT, new VISST and

301 old VISST inferred mean CTHs of 12.8 (±1.7), 12.2 (±2.0), 13.0 (±2.7) and 11.7 (±2.5) km,

302 respectively. While all four techniques underestimated the optically thin anvil CTHs by

303 more than 3 km, differences between their mean CTHs were generally quite small (within 1.3

304 km) with the new VISST being the highest and the old VISST being the lowest. It was also

305 found that the new VISST had better agreement with the CPL for optically thicker anvils (cf.

Fig. 2b) and convective cores (cf. Fig. 2a). This day also had the highest percentages of CTP

307 < 500 hPa retrieved by all four techniques (CO2ATs ~98 %, new VISST ~95% and old

308 VISST ~94%).

On July 17 (Fig. 2c), the ER-2 flew over a large mesoscale complex off the Pacific coast of Costa Rica. Many optically thin cirrus clouds were missed by the four techniques at the beginning of this flight. The CPL-measured CTHs showed large fluctuations over the mesoscale complex causing problems in matching the collocation of the CPL and GOES-12 imager data. The CPL detected CTP < 500 hPa ~94% of the time, compared to about 71, 66, and 60% for the CO2ATs, the new VISST and the old VISST, respectively. For the period 12:59:25-16:44:09 UTC, when CO2ATs retrieved CTP < 500 hPa, the associated mean

316 CTHs were 12.8±1.8 km (CPL), 12.0±1.5 km (MCO2AT), 10.3±2.2 km (SCO2AT),

317 10.3±3.1 km (new VISST), and 8.8±3.0 km (old VISST).

318 On July 19 (Fig. 2d), the ER-2 flew over the cores of several convective systems in 319 the Pacific and then over the Caribbean to measure Sahara dust and low-lying clouds. There 320 were high-altitude sub-visible thin-cirrus clouds lying above the convective systems during 321 the first couple of flight hours. The sub-visible, thin cirrus clouds were generally not well-322 retrieved by the four satellite techniques, but the new VISST showed significant 323 improvement in the CTH retrievals over the old VISST. Comparing the data when CO2ATs 324 had valid CTP < 500 hPa, the mean CTHs inferred on this day were 14.5 ±1.3 km (CPL), 325 12.2 ±1.2 km (MCO2AT), 10.5 ±1.9 km (SCO2AT), 11.7 ±2.4 km (new VISST) and 9.2 326 ± 3.0 km (old VISST). The later periods of this flight were mainly over low-lying 327 stratocumulus clouds [Toon et al., 2009]. Overall, the CPL detected ~59% of CTP < 500 hPa during the flight as compared to only ~29%, ~30% and ~25%, detected by the CO2ATs, new 328 329 VISST, and old VISST, respectively. 330 On August 6 (Table 1), the CPL detected an extensive, thin layer of sub-visible high-331 altitude (~15 km) cirrus clouds that occurred high above a deck of low-altitude (~1 km) 332 boundary-layer clouds [Toon et al., 2009]. The sub-visible cirrus clouds were generally 333 missed by the four satellite techniques, leading to the largest differences in Table 1 between 334 N_{CPL} (1694), N_{CO2AT} (230), $N_{\text{VISST-old}}$ (191) and $N_{\text{VISST-new}}$ (242). The sub-visible cirrus 335 clouds on this day are responsible for most of the undetected upper-troposphere clouds in the 336 passive retrieval results.

337 Overall, there were a total of 15,028 matched data points as shown in Table 1. Out of 338 these, \sim 89% or 13,387 data (N_{CPL}) had CPL-detected CTHs above 500 hPa. There were

339	~68% ($N_{CO2AT} = 10225$) that had MCO2AT/SCO2AT-retrieved CTHs above 500 hPa and,
340	among them, some 0.5% (54) in which the CPL detected no CTHs above 500 hPa. The new
341	VISST retrieved ~66% ($N_{\text{VISST-new}} = 9883$) having CTP < 500 hPa in contrast to ~61%
342	$(N_{\text{VISST-old}} = 9134)$ from the old VISST retrievals. As a result, the CO2ATs retrieved ~76%,
343	the new VISST retrieved \sim 74% and the old VISST retrieved \sim 69% of CTPs < 500 hPa when
344	the CPL detected such upper-troposphere clouds (< 500 hPa). The findings are reasonable
345	considering the large fractions of optically very thin cirrus clouds that occurred during the
346	TC4 experiment [Toon et al., 2009]. The lidar system is much more sensitive to thin clouds
347	than the passive sensors on the GOES-12 imager, which results in more detection of high
348	clouds by the CPL.
349	Figure 3 shows scatter plots comparing the CTHs retrieved from the four satellite
350	techniques to those from the CPL for all 9 flight days when the CO2ATs retrieved CTPs $<$
351	500 hPa. The mean CTHs are 14.2 ± 2.1 , 10.7 ± 2.1 , 12.1 ± 1.6 , 9.7 ± 2.9 , and 11.4 ± 2.8 km
352	km for the CPL, SCO2AT (Figure 3a), MCO2AT (Figure 3b), the old VISST (Figure 3c),
353	and the new VISST (Figure 3d), respectively. The corresponding overall mean biases
354	relative to the CPL are -3.5, -2.1, -4.5 km, and -2.8 km. The MCO2AT reduced the mean
355	biases of the SCO2AT by 1.4 km whereas the new VISST reduced the mean biases of the old
356	VISST by 1.7 km. Note that much better agreement between the new VISST and CPL are

357 found for CTH > 14 km. Unlike the new VISST, all of the SCO2AT (Fig. 3a), MCO2AT

358 (Fig. 3b) and old VISST (Fig. 3c) have generally underestimated the CTHs between 14.0-

359 16.5 km.

360

361 **4.2** Cloud Emissivities and Multilayer Clouds

362	Figure 4 shows the CTH differences (dz_c) between the CPL and the four passive
363	methods plotted as a function of the MCO2AT-inferred cloud 10.7- μ m effective emissivity
364	(ε_c^{11}) . Results in the figure were obtained from the 9-day data shown in Figure 3. For more
365	opaque and likely optically thick clouds with $\varepsilon_c^{11} > 0.95$, the mean dz_c were found to be -1.9,
366	-1.4, -2.4, and -0.2 km for the SCO2AT (Figure 4a), MCO2AT (Figure 4b), old VISST
367	(Figure 4c), and new VISST (Figure 4d), respectively. The underestimation of CTH by 1.4-
368	2.4 km for those nearly opaque clouds (except for the new VISST case) are consistent with
369	earlier results found by Sherwood et al., [2004], who showed that the satellite infrared-
370	derived CTHs were 1-2 km below the physical cloud tops detected by lidar instruments. This
371	underestimation appeared to have been largely corrected with the method of Minnis et al.,
372	[2008] used in the new-VISST algorithm.
373	For less opaque clouds with $\varepsilon_c^{11} < 0.95$, the absolute differences increase
374	progressively with decreasing ε_c^{11} . For instance, for semitransparent clouds at $\varepsilon_c^{11} \sim 0.3$, the
375	mean dz_c were found to be -5.1 km (SCO2AT – CPL), -2.8 km (MCO2AT – CPL), -5.7 km
376	(old VISST – CPL) and –3.9 km (new VISST – CPL). Note that the MCO2AT appeared to
377	have more overestimated CTHs for less opaque clouds ($\varepsilon_c^{11} < 0.8$) and have the overall
378	smallest mean dz_c compared to the SCO2AT (Fig. 4a) and two VISSTs (Figs. 4c and 4d).
379	To examine the impact of multilayer clouds on the retrievals, Figure 5 shows the
380	CTH differences from Fig. 4 plotted as a function of the averaged number of cloud layers
381	(N_{layer}) detected by the CPL. For single-layered clouds $(N_{layer} = 1)$, the associated mean dz_c
382	are -2.5 (SCO2AT), -1.4 (MCO2AT), -3.2 (old VISST) and -1.6 km (new VISST). The
383	absolute mean dz_c of all four techniques increase with increasing N_{layer} , but the MCO2AT

384	shows the smallest mean biases for all single- and multi-layered clouds and it systematically
385	reduces the SCO2AT mean biases by \sim 40%. However, there appears to be the possibility
386	that the CPL detects more cloud layers because the optical depths of the upper layer(s) are
387	thinner in those cases and, as a result, the greater number of cloud layers may simply be
388	related to more transmissive (smaller ε_c^{11}) upper cloud layer(s). Therefore, the differences
389	need to be examined separately for the different multilayered conditions.
390	Figures 6-8 present the dz_c as a function of ε_c^{11} by separating the single-layered
391	(Figure 6), two-layered (Figure 7), and multi-layered (Figure 8) clouds. For the single-
392	layered cases, the mean dz_c are fairly constant within each technique until ε_c^{11} falls below 0.5.
393	For $0.5 < \varepsilon_c^{11} < 0.95$, the MCO2AT has the smallest mean dz_c (-0.5 to -1.0 km) and it
394	reduces the SCO2AT absolute mean biases by \sim 1 km. The new VISST also reduces the
395	absolute mean biases of the old VISST significantly towards larger ε_c^{11} .
396	For the two-and more-layered cases, their mean differences behaved like those
397	discussed in Fig. 4, except that the two- and more-layered clouds (Figures 7 and 8) showed
398	larger magnitudes of differences than those of the single-layered clouds (Figure 6). The
399	MCO2AT generally has the smallest mean biases among all multilayered clouds with ε_c^{11} <
400	0.9 and, similarly, it reduces the SCO2AT absolute mean biases by ~40%. Nonetheless, the
401	discrepancies among the SCO2AT, MCO2AT, old VISST and new VISST all increased
402	considerably as ε_c^{11} decreased to values smaller than 0.5 and the discrepancies among the
403	four techniques are greater for the more semitransparent upper-troposphere clouds.
404	Also, there were 3162 data when the CPL detected CTHs above 500 hPa, but the
405	CO2ATs had no retrieval due to probably thin clouds and/or edges of broken clouds. Among

406	these data, \sim 50% had VISST-retrieved CTHs and these are plotted in Figure 9a (old VISST)
407	and Figure 9b (new VISST) as compared with the CPL CTHs. Since such cases were very
408	optically thin clouds, it is not surprising to see that most of the VISST CTHs are much too
409	low, especially since there were no MCO2AT/SCO2AT retrievals available. The mean
410	CTHs are 13.2 (\pm 2.6) km for the CPL, 3.3 (\pm 2.4) km for the old VISST, and 3.9 (\pm 2.7) for
411	the new VISST. Although the mean improvement is small, more data in the new VISST
412	showed fairly good CTHs retrievals. Nevertheless, it is clear that these apparently optically
413	thin cloud retrievals should be used very cautiously. Although the VISST sometimes detects
414	clouds with optical depths less than 0.1, the retrieved values are highly inaccurate.
415	To summarize, among the four techniques, the MCO2AT generally produces better
416	agreement with the CPL for optically thin clouds when CTPs < 500 hPa were retrieved. The
417	MCO2AT also has the best performance for all upper-transmissive clouds that are in single-
418	and multilayered conditions. It enhances the mean SCO2AT CTH by \sim 1 km and, thus,
419	reduces the mean SCO2AT biases by ~40%. The new VISST produces more accurate CTHs
420	for the tropical upper-tropospheric clouds compared to the old VISST. The new correction
421	for Z_{eff} to CTH employed in the new VISST algorithm yielded a nearly unbiased result for
422	optically thick clouds. The new ozone and ice crystal models also employed in the new
423	VISST increased the overall detection of optically thin clouds as well as enhanced the CTH
424	retrievals for those optically thin clouds.
425	
426	5. Summary and Conclusions

427 Nine days of daytime upper-troposphere cloud-top height (CTH) measurements obtained from GOES-12 imager data and the ER-2 CPL data during the July-August 2007 428

429 TC4 were compared to evaluate four satellite retrieval techniques for processing enhanced 430 satellite single-layer and multilayer cloud property retrieval products at NASA Langley 431 Research Center (LaRC) [Minnis et al., 2009a]. The comparisons focused on upper-432 tropospheric clouds retrieved with CTP < 500 hPa using a standard single-layered CO₂-433 absorption technique (SCO2AT), a modified CO₂-absorption technique (MCO2AT), an 434 earlier version of a Visible-Infrared-Shortwave-Split-window Technique (old VISST), and a 435 recently-improved version of the VISST (new VISST). 436 The evaluations of the four satellite techniques are important because the old VISST 437 and MCO2AT algorithms are currently operating together to provide satellite cloud property 438 retrieval products at LaRC for single and multilayered clouds and the new VISST algorithm 439 is expected to improve those cloud products. In comparisons with the CPL CTHs, the mean 440 CTH biases with the MCO2AT are smaller by a factor of ~ 1.7 than those with the SCO2AT 441 whereas the mean biases with the new VISST are smaller by a factor of ~1.6 than those with 442 the old VISST. Overall, the CPL detected ~89% CTPs < 500 hPa whereas the SCO2AT, 443 MCO2AT, old VISST, and new VISST retrieved 76, 76, 69, and 74% of those, respectively. 444 When both the CPL and CO2ATs detected CTPs < 500 hPa, the mean CTHs from the CPL, 445 SCO2AT and MCO2AT are 14.2 (± 2.1), 10.7 (± 2.1) and 12.1 (± 1.6) km whereas the 446 associated mean CTHs from the old and new VISSTs are 9.7 (±2.9) and 11.4 (±2.8) km, 447 respectively. These results are encouraging when one considers the large percentages of 448 upper-tropospheric semitransparent clouds found during TC4. Although the MCO2AT 449 CTHs are generally in better agreement with the CPL data, their CTHs are on average ~ 2.1 450 km lower than the CPL CTHs. The mean bias of 2.1 km found here for the TC4 tropical 451 clouds is twice as large as the mean bias of ~ 1 km shown in *Chang et al.* [2009] who

evaluated the MCO2AT-inferred CTHs for midlatitude clouds between 20°N-55°N. The
larger mean bias found here is likely owing to the high occurrences of optically thin cirrus
clouds during TC4. However, both studies show that the MCO2AT mean CTH is ~1.4 km
higher than the SCO2AT.

456 Overall, the new VISST algorithm produces more accurate CTHs for optically thick 457 clouds compared to the old VISST algorithm. The new correction of CTHs in the new 458 VISST algorithm yielded a nearly unbiased result for optically thick clouds. The CTHs from 459 the new VISST for thinner clouds also increased for all cloud emissivities as compared with 460 their old VISST counterparts. An additional benefit of the new VISST algorithm is its 461 enhanced detection of optically thin cirrus clouds by more than 5% compared to the old 462 VISST algorithm.

463 As demonstrated in this study, the main cause of the CTH biases in all four satellite 464 techniques applied to the GOES-12 imager data is associated with the semitransparencies of 465 tropical upper-tropospheric clouds. Their retrieval biases increased progressively as the 466 cloud effective emissivity decreased below about 0.5. Further analysis also showed that the 467 mean biases increased from single-layered cloud cases to multilayered cloud cases in all four 468 techniques, but larger uncertainties were still associated mainly with the semitransparent 469 clouds having emissivities less than ~ 0.5 . It was found that the mean biases increased with 470 the number of cloud layers detected by the CPL, which implies that as the numbers of the 471 cloud layers increased, so too did the semitransparency of the upper layer(s) in those 472 multilayered cloud cases.

From the perspective that the MCO2AT uses only the infrared data at 10.7- and 13.3μm channels, the technique can be applied equally for daytime and nighttime observations

- and is applicable to the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on
- 476 Meteosat-8 and -9, the Moderate-resolution Imaging Spectroradiometer (MODIS) on Terra
- 477 and Aqua, and the upcoming GOES-R imager series [Schmit et al., 2005]. Another
- 478 application of the MCO2AT is for multilayer cloud retrieval as shown in *Chang and Li*
- 479 [2005]. The MCO2AT in conjunction with the new VISST has recently been developed for
- 480 an integrated multilayer cloud retrieval algorithm as illustrated in the results of *Minnis et al.*
- 481 [2009a]. Future work requires more validation studies for more assessment of the MCO2AT,
- 482 the new VISST, and the multilayer retrieval technique.
- 483
- 484

485 Acknowledgements

- 486 This research was supported by the NASA Radiation Science Program TC4 project, the
- 487 NASA Applied Sciences Program, the Department of Energy Atmospheric Radiation
- 488 Measurement Program through Interagency Agreement, DE-AI02-07ER64546, and the
- 489 NOAA Center for Satellite Applications and Research GOES-R program.

References

491	Berk, A., et al. (1999), MODTRAN4 v. 2.0 User's Manual, Air Force Geophysics Laboratory
492	Tech. Rep. AFGL-TR-89-0122, 98 pp., Air Force Mat. Comm., Hanscomb AFB,
493	Mass.
494	Chahine, M. T. (1974), Remote sounding of cloudy atmospheres. I. The single cloud layer, J.
495	Atmos. Sci., 31, 233-243.
496	Chang, FL., and Z. Li (2005), A new method for detection of cirrus overlapping water
497	clouds and determination of their optical properties, J. Atmos. Sci., 62, 3993-4009.
498	Chang, FL., P. Minnis, B. Lin, M. M. Khaiyer, R. Palikonda, and D. A. Spangenberg (2009),
499	A modified method for inferring upper-troposphere cloud-top height using the GOES-
500	12 imager 10.7- and 13.3-µm data, J. Geophys. Res., in revision.
501	Clothiaux, E. E., T. P. Ackerman, G. G. Mace, K. P. Moran, R. T. Marchand, M. Miller, and
502	B. E. Martner (2000), Objective determination of cloud heights and radar
503	reflectivities using a combination of active remote sensors at the ARM CART Sites, J.
504	Appl. Meteorol., 39, 645-665.
505	Kalnay, E., M. Kanamitsu, and W. E. Baker (1990), Global numerical weather prediction at
506	the National Meteorological Center, Bull. Am. Meteorol. Soc., 71, 1410-1428.
507	Kanamitsu, M., and coauthors (1991), Recent changes implemented into the Global Forecast
508	System at NMC, Weather and Forecasting, 6, 425-435.
509	McCleese, D. J., and L. S. Wilson (1976), Cloud top heights from temperature sounding
510	instruments, Q. J. R. Meteorol. Soc., 102, 781-790.

511	McGill, M. J., D. L. Hlavka, W. D. Hart, J. D. Spinhirne, V. S. Scott, and B. Schmid (2002),
512	The Cloud Physics Lidar: Instrument description and initial measurement results,
513	Applied Optics, 41, 3,725-3,734.
514	McGill, M. J., L. Li, W. D. Hart, G. M. Heymsfield, D. L. Hlavka, P. E. Racette, L. Tian, M.
515	A. Vaughan, and D. M. Winker (2004), Combined lidar-radar remote sensing: Initial
516	results from CRYSTAL-FACE, J. Geophys. Res., 109, doi: 10.1029/2003JD004030.
517	Menzel, W. P., W. L. Smith, and T. R. Stewart (1983), Improved cloud motion vector and
518	altitude assignment using VAS, J. Climate Appl. Meteorol., 22, 377-384.
519	Minnis, P., D. P. Kratz, J. A. Coakley, Jr., M. D. King, D. Garber, P. Heck, S. Mayor, D. F.
520	Young, and R. Arduini (1995), Cloud optical property retrieval (Subsystem 4.3),
521	Clouds and the Earth's Radiant Energy System (CERES), Algorithm Theoretical
522	Basis Document, 3, Cloud analyses and radiance inversions (Subsystem 4), NASA
523	RP 1376, 3, edited by CERES Science Team, pp. 135-176.
524	Minnis, P., D. P. Garber, D. F. Young, R. F. Arduini, and Y. Takano (1998),
525	Parameterization of reflectance and effective emittance for satellite remote sensing of
526	cloud properties, J. Atmos. Sci., 55, 3313-3339.
527	Minnis, P., C. R. Yost, S. Sun-Mack, and Y. Chen (2008), Estimating the physical top
528	altitude of optically thick ice clouds from thermal infrared satellite observations using
529	CALIPSO data, Geophys. Res. Lett., 35, L12801, doi:10.1029/2008GL033947.
530	Minnis, P., and coauthors (2009a), Cloud properties determined from GOES and MODIS
531	data during TC4, submitted to J. Geophys. Res., this issue.

532	Minnis, P., S. Sun-Mack, and Co-authors (2009b), Cloud property retrievals for CERES
533	using TRMM VIRS and Terra and Aqua MODIS data. IEEE Trans. Geosci. Remote
534	Sens., submitted.

- Rossow, W. B., and R. A. Schiffer (1999), Advances in understanding clouds from ISCCP, *Bull. Am. Meteorol. Soc.*, 80, 2261-2287.
- Schmit, T. J., E. M. Prins, A. J. Schreiner, and J. J. Gurka (2001), Introducing the GOES-M
 imager, *National Weather Assoc. Digest*, *25*, 28-37.
- 539 Schmit, T. J., M. M. Gunshor, W. P. Menzel, J. J. Gurka, J. Li, and A. S. Bachmeier (2005),
- 540 Introducing the next-generation Advanced Baseline Imager on GOES-R, *Bull. Am.*541 *Meteorol. Soc.*, *86*, 1079-1096.
- 542 Sherwood, S. C., J.-H. Chae, P. Minnis, and M. McGill (2004), Underestimation of deep
- 543 convective cloud tops by thermal imagery, *Geophys. Res. Lett.*, *31*,
- 544 10.1029/2004GL019699.
- Smith, W. L., and C. M. R. Platt (1978), Comparison of satellite-deduced cloud heights with
 indications from radiosonde and ground-based laser measurements, *J. Appl. Meteorol.*, *17*, 1796-1802.
- 548 Smith, W. L., Jr., P. Minnis, H. Finney, R. Palikonda, and M. M. Khaiyer (2008), An
- 549 evaluation of operational GOES-derived single-layer cloud top heights with ARSCL
- over the ARM Southern Great Plains site, *Geophys. Res. Lett.*, 35, L13820,
- 551 doi:10.1029/2008GL034275.
- 552 Stephens, G. L., and C. D. Kummerow (2007), The Remote Sensing of Clouds and
- 553 Precipitation from Space: A Review, J. of Atmos. Sci., 64, 3742–3765.

554	Toon, O. B., and Co-authors (2009), Planning and implementation of the Tropical
555	Composition, Cloud and Climate Coupling Experiment (TC4), J. Geophys. Res., this
556	issue.
557	Wielicki, B. A., and J. A. Coakley Jr. (1981), Cloud retrieval using infrared sounder data:
558	Error analysis, J. Appl. Meteorol., 20, 157-169.
559	Winker, D. M., W. H. Hunt, and M. J. McGill (2007), Initial performance assessment of
560	CALIOP, Geophys. Res. Lett., 34, L19803, doi:10.1029/2007GL030135.
561	Yang, P., G. W. Kattawar, G. Hong, P. Minnis, and Y. X. Hu (2008), Uncertainties
562	associated with the surface texture of ice particles in satellite-based retrieval of cirrus
563	clouds: Part I. Single-scattering properties of ice crystals with surface roughness,
564	IEEE Trans. Geosci. Remote Sens., 46(7), 1940-1947.
565	

567Table 1ER-2 flight dates, time periods, numbers of CPL and GOES12-imager matched data568points (N_{match}) and numbers of the data points having valid CTP < 500 hPa from the</td>569CPL (N_{CPL}) , the CO2ATs (N_{CO2AT}) and the two VISSTs $(N_{VISST-old}, N_{VISST-new})$. In570parentheses indicate the numbers of data points having valid CTP < 500 hPa, but</td>571the CPL does not detect a CTP < 500 hPa.</td>572

Date	Time	$N_{\rm match}$	$N_{\rm CPL}$	$N_{\rm CO2AT}$	$N_{ m VISST-old}$	$N_{ m VISST-new}$
Jul. 17	12:59:25-16:44:09	1348	1262	963 (7)	806 (5)	890 (7)
Jul. 19	12:55:21-17:51:41	1777	1053	513 (0)	450 (1)	528 (1)
Jul. 22	12:29:23-17:15:45	1717	1628	1475 (31)	1259 (10)	1417 (19)
Jul. 24	12:11:31-18:14:42	2179	1745	1292 (16)	1225 (13)	1312 (14)
Jul. 31	13:15:56-17:19:40	1462	1462	1435 (0)	1379 (0)	1396 (0)
Aug. 3	13:49:16-17:51:17	1452	1452	1349 (0)	1113 (0)	1213 (0)
Aug. 5	13:21:29-16:58:11	1298	1298	1244 (0)	1143 (0)	1218 (0)
Aug. 6	12:40:47-18:14:03	1999	1694	230 (0)	191 (3)	242 (1)
Aug. 8	12:40:45-17:40:16	1796	1793	1724 (0)	1568 (0)	1667 (0)

575		Figure Captions
576	Fig. 1	Schematic diagram for illustrating the SCO2AT and MCO2AT algorithms.
577	Fig. 2	Comparisons of the different CTHs inferred from the GOES-12 imager data using the
578		new-VISST (blue), old-VISST (green), SCO2AT (purple) and MCO2AT (red). The
579		CPL cloud vertical mask is shown in grey. (a) for August 8 between 12:40:45-
580		15:40:45 UTC. (b) for July 31 between 13:15:56-16:15:56 UTC. c) for July 17
581		between 12:59:25-15:59:25 UTC. d) for July 19 between 12:55:21-15:55:21 UTC.
582	Fig. 3	Comparisons of CTHs inferred from the GOES-12 imager and the CPL data. (a) for
583		SCO2AT vs CPL. (b) for MCO2AT vs CPL. (c) for old-VISST vs CPL. (d) for new-
584		VISST vs CPL.
585	Fig. 4	The CTH difference dz_c as a function of the 10.7-µm cloud effective emissivity ε_c^{11} .
586		(a) for the SCO2AT minus CPL. (b) for the MCO2AT minus CPL. (c) for the old-
587		VISST minus CPL. (d) for the new-VISST minus CPL. Thick-grey lines represent
588		the running means.
589	Fig. 5	The CTH difference dz_c as a function of the number of cloud layers N_{layer} . (a) for
590		the SCO2AT minus CPL. (b) for the MCO2AT minus CPL. (c) for the old-VISST
591		minus CPL. (d) for the new-VISST minus CPL. Thick-grey lines represent the
592		running means.
593	Fig. 6	Same as in Fig. 4, except for the single-layered clouds.
594	Fig. 7	Same as in Fig. 4, except for the two-layered clouds.
595	Fig. 8	Same as in Fig. 4, except for the multilayered ($N_{layer} > 2$) clouds.
596	Fig. 9	Comparisons of the old-VISST (a) and new-VISST (b) CTHs with the CPL CTH for
597		the data when there are no SCO2AT/MCO2AT retrievals.

Fig. 1 Schematic diagram for illustrating the SCO2AT and MCO2AT algorithms.

Fig. 2 Comparisons of the different CTHs inferred from the GOES-12 imager data using the new-VISST (blue), old-VISST (green), SCO2AT (purple) and MCO2AT (red). The CPL cloud vertical mask is shown in grey. (a) for August 8 between 12:40:45-15:40:45 UTC. (b) for July 31 between 13:15:56-16:15:56 UTC. c) for July 17 between 12:59:25-15:59:25 UTC. d) for July 19 between 12:55:21-15:55:21 UTC.

Fig. 2 (continued)

Fig. 3 Comparisons of CTHs inferred from the GOES-12 imager and the CPL data. (a) for SCO2AT vs CPL. (b) for MCO2AT vs CPL. (c) for old-VISST vs CPL. (d) for new-VISST vs CPL.

Fig. 4 The CTH difference dz_c as a function of the 10.7-µm cloud effective emissivity ε_c^{11} . (a) for the SCO2AT minus CPL. (b) for the MCO2AT minus CPL. (c) for the old-VISST minus CPL. (d) for the new-VISST minus CPL. Thick-grey lines represent the running means.

Fig. 5 The CTH difference dz_c as a function of the number of cloud layers N_{layer} . (a) for the SCO2AT minus CPL. (b) for the MCO2AT minus CPL. (c) for the old-VISST minus CPL. (d) for the new-VISST minus CPL. Thick-grey lines represent the running means.

Fig. 6 Same as in Fig. 4, except for the single-layered clouds.

Fig. 7 Same as in Fig. 4, except for the two-layered clouds.

Fig. 8 Same as in Fig. 4, except for the multilayered $(N_{layer} > 2)$ clouds.

Fig. 9 Comparisons of the old-VISST (a) and new-VISST (b) CTHs with the CPL CTH for the data when there are no SCO2AT/MCO2AT retrievals.