Tropical Ocean Water Budgets and Model Diagnostics as Derived from Satellite Data

Christian Kummerow and Paula Brown
Colorado State University

with Help from GEWEX Data and Assessments Panel
Global Water and Energy Budgets
(from Trenberth, Fasullo and Kiehl, 2009, BAMS)
Multi-Year Average Radiation

<table>
<thead>
<tr>
<th>Source</th>
<th>LW↑</th>
<th>LW↓</th>
<th>LW$_{net}$</th>
<th>SW↑</th>
<th>SW↓</th>
<th>SW$_{net}$</th>
<th>Sfc$_{net}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trenberth et al., 2009</td>
<td>396.0</td>
<td>333.0</td>
<td>-63.0</td>
<td>23.0</td>
<td>184.0</td>
<td>161.0</td>
<td>98.0</td>
</tr>
<tr>
<td>GEWEX SRB (1/84 – 12/07)</td>
<td>396.5</td>
<td>343.9</td>
<td>-52.6</td>
<td>22.0</td>
<td>188.6</td>
<td>166.6</td>
<td>114.0</td>
</tr>
<tr>
<td>ISCCP FD (1985 – 2004)</td>
<td>395.6</td>
<td>344.7</td>
<td>-50.9</td>
<td>23.2</td>
<td>188.9</td>
<td>165.7</td>
<td>114.9</td>
</tr>
<tr>
<td>CERES (Ed 2 Avg) (2000 – 2005)</td>
<td>398.0</td>
<td>342.0</td>
<td>-56.0</td>
<td>23.1</td>
<td>188.9</td>
<td>165.8</td>
<td>109.8</td>
</tr>
<tr>
<td>A-Train (2006 – 2009)</td>
<td>398.0</td>
<td>347.2</td>
<td>-50.8</td>
<td>20.8</td>
<td>189.0</td>
<td>168.2</td>
<td>117.4</td>
</tr>
</tbody>
</table>
Global Energy Budget Closure

Global Precipitation Climatology Project (GPCP)
Robert Adler, U. of Maryland-College Park, USA

GPCP mean is 2.64 mm/day corresponding to 76 W/m² ± 7 W/m²
• **Near-surface air temperature and humidity**
 – Roberts et al. (2010) neural net technique
 – SSM/I only from CSU brightness temperatures (thus only covers 1997 - 2006 in Version 1.0)
 – Gap-filling methodology -- use of MERRA variability – 3 hour

• **Winds**
 – Uses CCMP winds (cross-calibrated SSM/I, AMSR-E, TMI, QuikSCAT, SeaWinds)
 – Gap-filling methodology -- use of MERRA variability – 3 hour

• **SST**
 – Pre-dawn based on Reynolds OISST
 – Diurnal curve from new parameterization
 – Needs peak solar radiation, precipitation

• **Uses neural net version of COARE**

• **Available at http://seaflux.org**
Open Ocean Domains

Tropical Indian (TI)
Tropical West Pacific (TWP)
Tropical Central Pacific (TCP)
Tropical East Pacific (TEP)
Tropical Atlantic (TA)
E, P and Div(Q) for Tropical Indian Ocean
E, P and Div(Q) for Tropical Atlantic
E, P and Div(Q) for Tropical East Pacific
E, P and Div(Q) for Tropical Central Pacific
E, P and Div(Q) for Tropical West Pacific
Water budgets from Reanalysis
The Bulk Parameterization

\[E = a C_q u_x (q_0 - q_a) \]
The Bulk Parameterization

\[E = \alpha C_q u_x (q_0 - q_a) \]
Summary

- Water is in balance over tropical oceans

- A trend is evident in West Pacific that is not seen in other basins. Therefore not a satellite trend but a natural change.

- Global models require too much evaporation and therefore precipitation to balance water. Extra precipitation is in the form of excess drizzle.