

Analysis of Atlantic Tropical Cyclone Genesis and Evolution Using NASA Satellite and Field Program Data Scott Braun and Michael T. Montgomery

Objectives

- To examine the role of the Saharan Air Layer in tropical cyclogenesis and evolution
- To examine the "Marsupial Hypothesis" and its relationship to the SAL
- To participate in analysis of new cases from GRIP

The SAL and TCs

 Karyampudi and Carlson (1983), Karyampudi and Pierce (1999) suggest positive influence of SAL

Dunion and Velden (2004)
 suggest negative influences

Vertical shear

High stability

Dry air

Relative Humidity and Streamlines

Data Sources

• TRMM 3B42 Multi-Satellite Precipitation (0.25°, 3-hourly resolution)

 AIRS L2 and L3 temperature and relative humidity profiles

 MODIS (Terra and Aqua) L2 and L3 aerosol optical depths

• NCEP Global analyses (1°, 6hourly resolution)

TRMM Precip, 850-hPa T

Initial Results

 Yet to find convincing evidence that warm air or AEJ shear inhibits storms

 AIRS data suggest that Atlantic is normally a dry, hostile environment

• Large-scale subsidence plays a significant role in drying the air

 Case studies (few so far) have yet to find clear negative SAL impact

TRMM Precip, 850-hPa T

700 hPa w, streamlines

TRMM Precip, 850-hPa T

Case Studies

• Hurricane Helene (2006)

- Hurricane Irene (2005)
- Tropical Storm Debby (200

700 hPa w, streamlines

Other cases examined so far with less scrutiny

 Hurricanes Fabian and
 Isabel
 (2003)

 Hurricanes Frances and

Possible SAL air Helene 12 UTC Sept. 17, 2006 Probable SAL air -40 700 mb Trajectory based approach - Diagnose ascent/descent along trajectories - Diagnose origin of air (SAL or not SAL) -60 -50 -30 -70 ·20 700 mb -30 -70 -50 -40 -20

Simulated 700-hPa RH, 12Z Sept. 17,

Helene

WRF Simulation

- 3 km horizontal resolution
- Produces very realistic evolution of large-scale flow
- Good track, OK intensity simulation
- SST cooling as storm slows
- Discussion with I. Guinness about running coupled and uncoupled simulations

TMI 3-Day Avg. SST

Debby

- WRF Simulation
 - 9 km horizontal resolution
 - 30-member ensemble
- Good range of tracks,
 intensities
- Examination of correllation between storm intensity and

environmei¹² as the SAL ⁸

Simulated 700-hPa RH,

winds

Idealized simulations

 WRF Simulation

 2 km horizontal resolution
 Rankine vortex, 15 m s-1 at surface
 Non-SAL sounding,

 SST=29°C

 Dry layer of 25% RH

between

Mid-level RH

QuickTime™ and a MPEG-4 Video decompressor are needed to see this picture.

If you are having trouble viewing the video, you can access it here.

Time series of SLP

Marsupial Research

Research led by M.
 Montgomery and M. Reimer

 Idealized simulations of the marsupial origins of TCs

 The role of the marsupial pouch in interaction of storms with the SAL

MODIS AOD, TRMM Precip. and 700-hPa storm-relative

QUESTIONS?