

DAWN Pulsed Coherent Doppler Wind Lidar Engineering/Science Parameter Tradeoffs

(Hold each expression constant for parameter trades)

1. Before Lidar Design and Fabrication

$$\frac{z_{AIRCRAFT}^{2} \Phi_{MIN}^{1,1,1} \left[C_{1} \ln \left(V_{SEARCH} \Delta z 4 / (c \lambda \cos(\theta)) \right) + C_{2} \right]}{ED^{2}T^{2} \left[\cos(\theta) \right]^{1.5} \beta_{MIN}} \sqrt{\frac{N_{AZIMUTHS} V_{AIRCRAFT}}{(PRF) \Delta x \Delta z}}$$
(1)

2. After Fabrication, Before Data Collection

$$\frac{z_{AIRCRAFT}^{2} \left[C_{1} \ln \left(V_{SEARCH} \Delta z \right) + C_{3} \right]}{T^{2} \beta_{MIN}} \sqrt{\frac{N_{AZIMUTHS} V_{AIRCRAFT}}{\Delta x \Delta z}}$$
(2)

Trade aircraft height and velocity, vertical and horizontal resolution, minimum detectible aerosol level, atmospheric transmission, number of measured azimuth directions, and velocity search space

3. After Data Collection, Before Dissemination

$$\frac{\left[C_{1}\ln\left(V_{SEARCH}\Delta z\right)+C_{3}\right]}{\beta_{MIN}\sqrt{\Delta x\,\Delta z}}$$
(3)

Trade vertical and horizontal resolution, minimum detectible aerosol level, and velocity search space

z = altitude [m]
$$z_{AIRCRAFT}$$
 = aircraft altitude
R = range of lidar to target [m]
R_{MAX} = $z_{AIRCRAFT} / \cos(\theta)$
 θ = laser beam nadir angle [radian] [30°]
 Φ = detected coherent photoelectrons per shot per range gate [-]
 $C_2 \Phi_{MIN}^{11,1}$ = 1 shot &1 m range gate & 1 frequency
bin search BW (N_{SEARCH} = 1)minimum Φ [\sqrt{m}]
 N_{SEARCH} = $4\Delta RV_{SEARCH} / (c\lambda)$ [-]
 ΔR = Data processing range gate length [m]
 V_{SEARCH} = search band for wind velocity [m/s]
 Δz = height resolution = $\Delta R \cos(\theta)$ [m]
 $c\lambda / 4 \approx 150; c\lambda / (4\Delta R) \approx 150 / \Delta R$
 c = speed of light [m/s]
 λ = laser wavelength [m] [2.05 10⁻⁶m]
 E = lidar laser pulse energy [J] [250 mJ]
D = circular receiver collection diameter [m] [0.15 m]
T = 1-way atmospheric intensity transmission [-]
 β = aerosol backscatter coefficient [$m^{-1}sr^{-1}$]
 $N_{AZIMUTHS}$ = number lidars scanner azimuths per repeat pattern [-]
 $V_{AIRCRAFT}$ = Aircraft horizontal velocity [-]
 Δx = along-track horizontal resolution [m]

GRIP science team input requested for stages 2 & 3. Send comments to michael.j.kavaya@nasa.gov