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ARW Model Description

The real-time ARW forecasts in 2005 used a two-way nested configuration (Michalakes et al. 2005), that featured a
12-km outer fixed domain with a movable nest of 4/1.33-km grid spacing.

The nest was centered on the location of the minimum 500-hPa geopotential height within a prescribed search
radius from the previous position of the vortex center (or within a radius of the first guess, when first starting).

Nest repositioning was calculated every 15 simulation minutes and the width of the search radius was based on the
maximum distance the vortex could move at 40 m s™.

On the 12-km domain, the Kain—Fritsch cumulus parameterization was used, but domains with finer resolution had
no parameterization.

All domains used the WRF single-moment 3-class (WSM3) microphysics scheme (Hong et al. 2004) that predicted
only one cloud variable (water for T > 0°C and ice for T < 0°C) and one hydrometeor variable, either rainwater or
snow (again thresholded on 0°C).

Both domains also used the Yonsei University (YSU) scheme for the planetary boundary layer (Noh et al. 2003).

This is a first-order closure scheme that is similar in concept to the scheme of Hong and Pan (1996), but appears
less biased toward excessive vertical mixing as reported by Braun and Tao (2000).

The drag formulation follows Charnock (1955) and is described more in section 5. The surface exchange coefficient
for water vapor follows Carlson and Boland (1978), and the heat flux uses a similarity relationship (Skamarock et al.
2005).

The forecasts were integrated from 0000 UTC and occasionally 1200 UTC during the time when a hurricane
threatened landfall within 72 h.

Forecasts were initialized using the Geophysical Fluid Dynamics Laboratory (GFDL) model, with data on a &°
latitude—longitude grid. The Global Forecast Model (GFS) from the National Centers for Environmental Prediction
(NCEP), obtained on a 1° grid, was used only when the GFDL was unavailable.

Davis, C., W. Wang, S.S. Chen, Y. Chen, K. Corbosiero, M. DeMaria, J. Dudhia, G. Holland, J. Klemp, J.
Michalakes, H. Reeves, R. Rotunno, C. Snyder, and Q. Xiao, 2008: Prediction of Landfalling Hurricanes with the

Advanced Hurricane WRF Model. Mon. Wea. Rev., 136, 1990-2005.


http://ams.allenpress.com/perlserv/?request=get-document&doi=10.1175%2F2007MWR2085.1#i1520-0493-136-6-1990-Michalakes1
http://ams.allenpress.com/perlserv/?request=get-document&doi=10.1175%2F2007MWR2085.1#i1520-0493-136-6-1990-Hong2
http://ams.allenpress.com/perlserv/?request=get-document&doi=10.1175%2F2007MWR2085.1#i1520-0493-136-6-1990-Noh1
http://ams.allenpress.com/perlserv/?request=get-document&doi=10.1175%2F2007MWR2085.1#i1520-0493-136-6-1990-Hong1
http://ams.allenpress.com/perlserv/?request=get-document&doi=10.1175%2F2007MWR2085.1#i1520-0493-136-6-1990-Braun1
http://ams.allenpress.com/perlserv/?request=get-document&doi=10.1175%2F2007MWR2085.1#i1520-0493-136-6-1990-Charnock1
http://ams.allenpress.com/perlserv/?request=get-document&doi=10.1175%2F2007MWR2085.1#s5
http://ams.allenpress.com/perlserv/?request=get-document&doi=10.1175%2F2007MWR2085.1#i1520-0493-136-6-1990-Carlson1
http://ams.allenpress.com/perlserv/?request=get-document&doi=10.1175%2F2007MWR2085.1#i1520-0493-136-6-1990-Skamarock1
http://ams.allenpress.com/perlserv/?request=get-document&doi=10.1175%2F2007MWR2085.1#i1520-0493-136-6-1990-Skamarock1

Post processing diagnostics

Here we shall be showing some post
processing for WRF-ARW. This model is
presently being added to our suite of
mesoscale models.



(a) Katr;iﬁa

Predicted storm center location at
indicated valid times (below) is
denoted by blue star in each
figure. Wind fields from AHW
forecasts have been shifted to
observed locations to facilitate
comparison.

HWind valid times are (a) 1132 UTC
29 Aug

250 km

Katrina, valid time = 1200
UTC 29 Aug (60-h forecast)

10-m wind from AHW real-time forecasts with
contours of nearest HWind (black lines)
analyses overlaid
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(a) Maximum 10-m wind and (b) minimum sea
level pressure for forecasts of Katrina beginning
0000 UTC 27 Aug. Legend labels 1.33, 4, and
12 km refer to grid spacing of WRF ARW,
version 2.1.2, using the Charnock drag relation.
The forecast on a 12-km grid used the Kain—
Fritsch parameterization. The 4-km real time
(gray dashed) refers to the forecast made in
real time with an innermost nest of 4-km grid
spacing.—_All__retrospective forecasts were

initialized with the GFDL initial condition.



(@) 12-km

| (€) 1.33-km

100 km

Size of the storm as
seen by the predicted
wind field at different
resolutions compared
to HWIND.

Shown here is 10-m wind speed (m
s—1) from 36-h Katrina forecast valid
1200 UTC 28 Aug on (a) the 12-km
grid, (b) the 4-km grid, (c) the 1.33-
km grid, and (d) the NOAA HWind
product valid 1200 UTC 28 Aug.
White ellipses in (d) are an
approximate trace of the radii of
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around the vortices in (a), (b), and (c).




— S composite radar

Model-derived reflectivity at 3-km MSL valid 2300 UTC 28
Aug from nest with (a) 1.33-km grid increment and (b) 4-km
grid increment. (c) Observed radar reflectivity composite
valid between 2000 and 2100 UTC 28 Aug based on tail
Doppler radar data from both the NOAA P-3 (red track) and
the Naval Research Laboratory P-3 (pink track) with the
Electra Doppler radar (ELDORA). The composite radar
image was obtained from the RAINEX field catalog
maintained by the Earth Observing Laboratory of the
National Center for Atmospheric Research.




We shall next illustrate several examples of the following scenario:

Deep convection flares up near the eye wall, as seen from the local growth of rain water
mixing ratio, liquid water mixing ratio or radar reflectivity as implied from model
hydrometeors.

Divergence flares up

Departures from balance laws flare up

Solution of complete radial equation shows rapid growth of hurricane intensity.




Departures from balance laws

The full divergence equation can be written in the form (from
Fankhauser 1974):

_v2¢:_f%_;ﬂj_2(@a_u_a_u@j+ﬂu+(a_wa_u+a_w@j+Dz+
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Red lines represent the balance equation (Haltiner and Williams 1980). The
blue underlined terms denote the non linear balance which is also expressed
as .
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Implication of gradient wind departures on hurricane intensity

In local cyclindrical storm centered coordinate we can write the complete radical
equation of motion in the form:
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This denotes a local value of the tangential wind from a complete radial wind equation in
the presence of gradient wind departures GWD. Note that —g%is generally <20 in the

inner rain area (r<200 km where 1 is positive outward). The gradient wind. in this locale
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We are locking for different options for 1~ —E(Giﬂ}—gg})ﬂ, and its positive root.
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Since g—}L’I we can write the inequality in the form_ f* +— 4 gi} 4 GIWD _ The left hand

side is essentially positive definite, GWD=0 would always satisfy this condition. A
negative value of GWD contributes to a value of I, in equation () larger than the gradient

wind value. ie. ;) . hence the extreme negative values of GWD would go with large

values of azinmithal motions ie supergradient winds or non physical situations. A
positive value of GWD, conversely describes situations with subgradient winds. Such
instances of very strong azimuthal motions described by the complete radial equation of
motion, are attributed to the departure from gradient wind (GWD) which also relate to
large values of divergence, this we illustrate below.

A note on Radial gradient wind solution:

For a hurricane in storm centered coordinate the radial gradient wind eguation is
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solution. Such instances of very strong azinmithal mofions, described by the complete
radical equation of motion, are attributed to the departures from gradient wind (GWD)
which relate to large values of divergence.

The full divergence equation can be written in the form (from Fankhauser 1974):
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Red lines represent the balance equation (Haltiner and Williams 1980). The underlined
terms denote the mnon linear balance which is  also  expressed as
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The complete radial equation of motion in storm centered coordinate (1 positive outward)

15 written in the form:
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denote radial gradient wind balance. The non linear balance and the radial gradient wind
equation are equivalent. Fortak (1956).
Fortak, H, "Concerning the general wverically averaged hydrodynamic equations

NHEP report no. 51, U.S. Weather Burean, Washington, DC, Apr. 1962




Thus departures from non linear balance can be approximately equated to departures
from gradient wind balance for the radial direction. Departures from non linear balance
largelv arise from horizontal and vertical advection of divergence and the divergence
square. If a flare up of deep convection occurs near the eye wall of a hurricane
divergence (/convergence) increases, so do the deparfures from balance laws. Growth

of negative departures leads to a stronger hurricane. This follows from

, (éoou éwav) ., (éD _aD _aD _aD) (&F, éF )
G = ——+——|+D" + —+u—+v—+m—J+ —+—J
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The complete radial equation may be written as where "GWD" denotes gradient wind
departures. and GWD is expressed by the radial wind equations carries the solutions
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the negative root is non physical. The other root, when GWD' is <=0, carries strong
tangential wind for its solution. When GWD'=0 then we have a radial gradient wind

balance.

2

7, &
V=g

cr
We have routinely mapped the field of GWD' in the intensifying and decaying phases of

hurricane intensity.




We have routinely mapped the field of GWD/ in the intensifying and decaying
phases of hurricane intensity.

We shall next illustrate several examples of the following scenario:

Deep convection flares up near the eye wall, as seen from the local growth of rain water
mixing ratio, liquid water mixing ratio or radar reflectivity as implied from model
hydrometeors.

Divergence flares up

Departures from balance laws flare up

Solution of complete radial equation shows rapid growth of hurricane intensity.
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NASA GRIP Experiment- FSU Intensity Forecast Enhancement

*The Global Hawk or the ER-2 leave Dryden/Edwards AFB, or the L f |
DC-8 flies into the storm e .
®*The plane observes the storm environment from above i ”'\T:D L-f“?fk
=Jt transmits data to NASA GSFC via a Communications Satellite / &0,
*NASA GSFC transmits the data in near real-time to FSU /i %\Lﬂ: 7 {17
*FSU interprets the data to forecast imminent Intensity changes | \ f“”}
"FSU sends the results to Mission Scientists 4 H*f@ 7
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‘ Observations Required

= Radar Reflectivity
= 3-Dimensional Winds
= Pressure Altitude

ef NASA Dryden Flight Research Center Photo Collection
hitp:/Hwww.dfrc nasa.gov/Gallery/Photo/index html
NASA Photo; EDO8-0309-24 Date: December 11,2008 Photo By: Tony Landis

‘This and a companion Global Hawk unmanned aircraft are used by NASA for Earth science
missions and by Northrop Grumman for developmental testing.




Airborne radar hydrometers




Future work

= Future work on mesoscale modeling during the hurricane season of 2009 will include the
following models: HWRF(EMC), WRF/ARW (NCAR), COAMPS (NRL),GFDL(NOAA),
HWRF-X (HRD), MM5 (FSU), WRF(FSU).
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