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Motivation

To improve understanding of the roles of

regionally-confined

— convective bursts
— aerosols

— microphysical processes, and
— latent heat

In modulating TC intensity & rainfall
In the context of larger-scale influences




Addressing role of clouds in TCs

1.

In-situ TC observations to improve the
representation of microphysics in mesoscale
models

WRF simulations to examine the relationships
among convective up/downdrafts,
microphysics, and TC rapid intensity change
Microwave & radar observations to examine the
role of microphysical structure, precipitation
production on the morphology of TCs.

RAMS simulations to examine the role of SAL
on TC evolution through role as CCN, GCCN
and IN

Projects using TCSP and NAMMA data




What models need from in-situ data

Parameterization schemes predict 1 or 2 moments of
the size distribution for a variety of hydrometeor
categories

Schemes require information about cloud microphysics
to accurately calculate conversion rates between species
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What models need from in-situ data

 Fits to SDs n(D) = N,D+e*P

« Shape & phase of particles

e Crystal fall speeds, V = aDP"
 Mass/diameter relations, m = aDP

» Single-scattering properties (g, oy, P;,)
e Collision/collection efficiencies



NAMMA: Different Storms sampled

Category & Name # of days of data
Tropical Storm Debby

Tropical Depression 8
(H. Helene)

Developing Waves (2):
Pre-Ernesto
Pre-Gordon

Non-Developing Waves (3)
Total 10




McFarquhar et al. 2007
s TS Debby & TD8
= Developing Waves
= Non-developing Waves

TC Stage of Evolution
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McFarquhar et al. 2007
m—— Updraft
m——— Downdraft
e Stratiform

Convective vs. Stratiform




Dennis 2005 WRF Slmulatlons
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Reasonable simulation of track needed for accurate
simulation of intensity...
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...which, Iin turn, provides a basis for evaluating simulated
rapid intensification in the context of TCSP observations




Example Comparison during CAT 1 (07 July IOP) Stage
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Simulation exhibits overprediction of large Z, better
evaluated by regional partitioning
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Our earlier simulations of Dennis (with Thomson uphysics)
showed observed & simulated T, at 85 GHz match much
better than our simulations of Hurricane Erin



Effect of SAL (as CCN) on TCs

SAL affects TCs by increasing stability,
wind shear & temperature inversion

Does It have an effect acting as CCN?
dealized simulation with RAMS
Double-moment microphysics

AX =2 km

Mean Atlantic hurricane sounding

Add CCN at varying stages in life cycle
Zhang et al. (2007 and 2009)
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For base simulations, it appeared that increasing CCN

reduces storm intensity
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BUT, simulations with different input profile do not
show same trends in how CCN affected storm intensity

- Need to understand how CCN modifies storm
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When adding CCN to mature TC, still no clear trend in
how CCN affect TC intensity




Zhang et al. 2009

CCN affect eyewall directly through latent heat
release & indirectly by modulating rainbands

Convection in rainbands negatively correlated with
that in eyewall.

Rainband development released latent heat away
from eyewall, blocked surface inflow & enhanced
cold pools.

Maximum impact of rainbands on eyewall had time
lag of 3.5-5.5 hr.

Convection in eyewall & rainbands not monotonically
related to input CCN due



Microwave retrievals and radiative
transfer, TC structure and intensity

Forward modeling of WRF-simulated TCs

« Examine PMW precursors of TC intensity change as
simulated by WRF, link to modeled physical processes

» Use database of TC microphysical data collected in
NASA hurricane experiments to examine sensitivity of
RTM simulations to assumed PSD’s

Advanced data mining of TC PMW structures

Quantitatively identify structures related to TC intensity
change in PMW imagery (NCDC HURSAT-MW database)




Summary

e Analysis of in-situ data refining constants
used In parameterization schemes

e WRF simulations of hurricanes

— Evaluated against observations to test
parameterized hydrometeor distributions

— Analyzed regionally to asses the role of
microphysical processes associated with
convective bursts in driving rapid intensification

e Study of SAL impact on TCs through role as
CCN offers no clear cut relation

— Non-linear feedbacks complicate understanding
cause/effect relation

— Case studies needed
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« Our MM5 simulations of Hurricane Erin
2001 showed graupel over-prediction by
comparing simulated T, with that
observed by AMPR during CAMEX-4

AMPR observation

......... Control Simulation

Control Simulation without graupel



« Our MM5 simulations of Hurricane Erin
2001 showed graupel over-prediction by
comparing simulated T, with that
observed by AMPR during CAMEX-4

AMPR observation

......... Control SimWation

Control Simukation without graupel
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At category 1 hurricane stage, model under predicts T, at 85
GHz suggesting amount of graupel may be under predicted



Impact of SAL on TCs

Saharan Air
Layer (SAL)

Mesoscale convective
vortex (MCYV)

TUNETEOSRT-4 TRUE COLOR IMAGERY

On 8/26/06, hot dry & dusty air from SAL drawn into MCV

** Increases stability, wind shear & temperature inversion
Do microphysical effects also matter?

13:80 UTC 26 ALG B8
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