## NOAA Hurricane Research and plans for 2010 Field

## HURRICANE EVACUATION

 ROUTE NOAAH Hurricane Research Division
## Current state of forecasting capabilities

Track: NOAA reduced track error by ~50\% since 1990 (current 48 h error ~100 nm)

Intensity: Little progress reducing intensity error (current 48 h error ~14 kt)
Storm Size: Progress is difficult to measure due to inadequate observations
Storm Surge: Accurate within $\pm 20 \%$ when track, intensity, and size known
Lead Time: Lead time was extended from 3 to 5 days in 2001
Precipitation: Modest annual improvements; forecast patterns match observations when track error is low

New/Improved Products: Refined cone graphic, wind speed probabilities, graphical tropical weather outlook, and probabilistic storm surge

Social/Behavioral Science: In its infancy

## Improvements still needed

## Given recent events,

- Katrina and Wilma causing catastrophic damage in 2005
- Large number of US landfalls (Hurricanes Dolly, Gustav, Ike, and TS Edouard, Fay) in 2008
- Rapid intensifiers just prior to landfall Charley (2004) and Humberto (2007)


## Time is now for NOAA to lead aggressive effort to improve hurricane forecasting



- Unified NOAA approach to guide and accelerate improvements in forecasts, with emphasis on rapid intensity change, and reduction in uncertainty
- Embraces strong collaboration with non-NOAA partners with ultimate objective to transition research into operations


## HFIP metrics for success

- Reduce track error by $50 \%$ at all lead times ( 100 nm to 50 nm at 48 h )
- Reduce intensity error by $50 \%$ at all lead times ( 14 kt to 7 kt at 48 h )
- Increase Probability of Detection and reduce False Alarm Ratio of rapid intensification (> $30 \mathrm{kt} / 24 \mathrm{~h}$ ) events
- Extend the lead time to 7 days.


## How to get there....

- Improve understanding of physical processes
- Improve numerical model guidance
- Optimize use of new and existing observing systems
- Expand and improve forecaster tools and applications



## Research thrusts

- Intensity and structure change, with emphasis on RI: processes that modulate internal storm dynamics and storm interactions with atmosphere and ocean;
- Track: interactions between tropical cyclone and its environment through optimal use of observations;
- Forecast Uncertainty: global and regional model ensembles to bound uncertainty and test predictability




## Improved understanding

## Intensity change and rapid intensification

- Advances in forecasts of tropical cyclone (TC) intensity, structure, and rainfall lag advances in TC track forecasts
- Multiscale nature of these processes major reason for this
- Environmental - O(1000 km) - troughs, shear
- Vortex - O(1-100 km) - symmetric/asymmetric dynamics
- Convective - O(1 km) - convection, vortical plumes
- Turbulent - O(1-100 m) - surface fluxes, entrainment/detrainment
- Microscale - O(1 mm) - hydrometeor/aerosol, latent heat release


## Some motivating questions

- What is relative importance of various scales in governing genesis and intensity change?
- SAL impacts on genesis and intensification?
- Role of precipitation structure and convective bursts in TC genesis and intensification?
-What are predictability limits for various scales?


## Environmental scale

Synoptic-surveillance using dropsondes.


Analytical \& numerical studies.
Ensemble track forecasting \& targeted observations.

## Vortex scale



## Vortex/Convective scale



## Convective scale

Contoured frequency by altitude diagrams (CFADs) of vertical motion For observations and simulation of Hurricane Katrina


## Turbulent scale

## Sub-grid Scale Turbulent Kinetic Energy




## Turbulent structure / Convection ana Boundary Layer Rolls

## Microphysical scale



Saharan Air Layer (SAL) Impact on intensity and rain

## Improved models

## Global:

- FIM global model developed at ESRL with help from NCEP
- Uses unique global grid (soccer-ball-like horizontal, adaptive vertical coordinate)


## Regional:

- Experimental HWRF developed at AOML \& ESRL based on NCEP HWRF
- Triply-nested regional model down to 1-km horizontal resolution



## Improved observations

Airborne platforms

- P-3's
- G-IV
- UAS

In-situ


- Wind, pressure, temperature

Expendables

- Dropsondes
- AXBT, AXCP, buoy

Remote sensors

- Doppler radar
- SFMR
- Scatterometer/profiler
- UAS

Doppler radar analysis overlaid by Aerosonde and coincident WP-3D track in TS Ophelia 16 Sept 2005

Eyewall Wind Speed Prafiles Hurricane Guillerma-3 August 1997



## Improved use of observations

EnKF data assimilation of inner core observations


30 N.

$100^{\circ} \mathrm{w}$
$90^{\circ} \mathrm{W}$
$80^{\circ} \mathrm{W}$
$-10$

## Recent genesis and RI cases sampled

## T.S. Fay genesis case

Winds in lowest 150 m on Aug. 142008


Flight-level winds on
Aug. 142008

(8)

## Recent genesis and RI cases sampled

## T.S. Fay genesis case

Doppler reflectivity (shaded) and winds (streamlines) at various levels on Aug. 142008


7 km


4 km

1.5 km


## Recent genesis and RI cases sampled

Paloma axisymmetric tangential (shaded, $\mathrm{m} / \mathrm{s}$ ) and radial winds (contour, $\mathrm{m} / \mathrm{s}$ )







## Plans for 2010

- IFEX 2010, Intensity Forecasting EXperiment
- field phase of HFIP
- partnering with NOAA interests (NHC, EMC, NESDIS)
- Research focus - genesis and rapid intensification
- Platforms
- 2 P-3's
- 1 G-IV (w/Doppler radar and SFMR)
- High-altitude UAS (Global Hawk)
- Possible low-altitude UAS (e.g., Aerosonde)
- Planned collaborations
- NASA GRIP
- NSF PREDICT


## P-3 aircraft maximum range of operations

Atlantic Basin Hurricane Tracking Chart National Hurricane Center, Miami, Florida


## G-IV aircraft maximum range of operations



## P-3 Flight pattern: Early genesis



## P-3 Flight pattern: Late genesis

## "Box-spiral pattern"



Pattern time 5.33 h

## P-3 Flight pattern: post-genesis/intensification

## "Rotated Figure-4 pattern"



## P-3 Flight pattern: modules

## "Convective burst module"



## G-IV Flight pattern: SAL experiment




