NOAA Hurricane Research and plans for 2010 Field Campaign

HURRICANE EVACUATION ROUTE Robe

Robert Rogers NOAA/Hurricane Research Division

Current state of forecasting capabilities

- **Track**: NOAA reduced track error by ~50% since 1990 (current 48 h error ~100 nm)
- Intensity: Little progress reducing intensity error (current 48 h error ~14 kt)
- Storm Size: Progress is difficult to measure due to inadequate observations
- Storm Surge: Accurate within ±20% when track, intensity, and size known
- Lead Time: Lead time was extended from 3 to 5 days in 2001
- **Precipitation**: Modest annual improvements; forecast patterns match observations when track error is low
- **New/Improved Products**: Refined cone graphic, wind speed probabilities, graphical tropical weather outlook, and probabilistic storm surge
- Social/Behavioral Science: In its infancy

Improvements still needed

Given recent events,

- Katrina and Wilma causing catastrophic damage in 2005
- Large number of US landfalls (Hurricanes Dolly, Gustav, Ike, and TS Edouard, Fay) in 2008
- Rapid intensifiers just prior to landfall Charley (2004) and Humberto (2007)

Time is now for NOAA to lead aggressive effort to improve hurricane forecasting

• Unified NOAA approach to guide and accelerate improvements in forecasts, with emphasis on rapid intensity change, and reduction in uncertainty

• Embraces strong collaboration with non-NOAA partners with ultimate objective to transition research into operations

HFIP metrics for success

- Reduce track error by 50% at all lead times (100 nm to 50 nm at 48 h)
- Reduce intensity error by 50% at all lead times (14 kt to 7 kt at 48 h)
- Increase Probability of Detection and reduce False Alarm Ratio of rapid intensification (> 30 kt/24 h) events
- Extend the lead time to 7 days.

How to get there....

- Improve understanding of physical processes
- Improve numerical model
 guidance
- Optimize use of new and existing observing systems
- Expand and improve forecaster tools and applications

Research thrusts

- Intensity and structure change, with emphasis on RI: processes that modulate internal storm dynamics and storm interactions with atmosphere and ocean;
- **Track:** interactions between tropical cyclone and its environment through optimal use of observations;
- Forecast Uncertainty: global and regional model ensembles to bound uncertainty and test predictability

Improved understanding

Intensity change and rapid intensification

- Advances in forecasts of tropical cyclone (TC) intensity, structure, and rainfall lag advances in TC track forecasts
- Multiscale nature of these processes major reason for this
 - Environmental O(1000 km) troughs, shear
 - Vortex O(1-100 km) symmetric/asymmetric dynamics
 - Convective O(1 km) convection, vortical plumes
 - Turbulent O(1-100 m) surface fluxes, entrainment/detrainment
 - Microscale O(1 mm) hydrometeor/aerosol, latent heat release

Some motivating questions

20

- What is relative importance of various scales in governing genesis and intensity change?
- SAL impacts on genesis and intensification?
- Role of precipitation structure and convective bursts in TC genesis and intensification?
- What are predictability limits for various scales?

Environmental scale

Synoptic-surveillance using dropsondes.

Analytical & numerical studies.

Ensemble track forecasting & targeted observations.

esearch Lab http://www.nrlmry.navy.mil/sat_products.html Visible (Sun elevation at center is 36 degrees) ...>

Vortex/Convective scale

U RUTURI W U RUTURI W U RUTURI W U RUTURI U RUTU

Airborne Doppler-analyzed wind field Hurricane Katrina, 28 September 2005

Convective scale

Contoured frequency by altitude diagrams (CFADs) of vertical motion For observations and simulation of Hurricane Katrina

Doppler

27-9 km HWRF-x

9-3 km HWRF-x

0900Z 29 Aug

0900Z 29 Aug

Turbulent scale

Fore/aft scans

Sub-grid Scale Turbulent Kinetic Energy

Microphysical scale

Saharan Air Layer (SAL) Impact on intensity and rain

20

Improved models

Global:

- FIM global model developed at ESRL with help from NCEP
- Uses unique global grid (soccerball-like horizontal, adaptive vertical coordinate)

Regional:

- Experimental HWRF developed at AOML & ESRL based on NCEP HWRF
- Triply-nested regional model down to 1-km horizontal resolution

Improved observations

Eyewall Wind Speed Profiles

2140

2851

Airborne platforms

- P-3's
- G-IV
- UAS

In-situ

Wind, pressure, temperature

Expendables

- Dropsondes
- AXBT, AXCP, buoy

Remote sensors

- Doppler radar
- SFMR
- Scatterometer/profiler
- UAS

atitude (°).

Doppler radar analysis overlaid by Aerosonde and coincident WP-3D track in TS Ophelia 16 Sept 2005

Longitude (°)

Improved use of observations

EnKF data assimilation of inner core observations

Recent genesis and RI cases sampled

T.S. Fay genesis case

Winds in lowest 150 m on Aug. 14 2008 Flight-level winds on Aug. 14 2008

EVACUATION ROUTE

Recent genesis and RI cases sampled

T.S. Fay genesis case

Doppler reflectivity (shaded) and winds (streamlines) at various levels on Aug. 14 2008

27

2.

18

15

ROUTE

Recent genesis and RI cases sampled

Paloma axisymmetric tangential (shaded, m/s) and radial winds (contour, m/s)

ACUATION ROUTE

Plans for 2010

- IFEX 2010, Intensity Forecasting EXperiment
 - field phase of HFIP
 - partnering with NOAA interests (NHC, EMC, NESDIS)
- Research focus genesis and rapid intensification
- Platforms
 - 2 P-3's
 - 1 G-IV (w/Doppler radar and SFMR)
 - High-altitude UAS (Global Hawk)
 - Possible low-altitude UAS (e.g., Aerosonde)
- Planned collaborations
 - NASA GRIP
 - NSF PREDICT

P-3 aircraft maximum range of operations

G-IV aircraft maximum range of operations

P-3 Flight pattern: Early genesis

CANE

EVACUATION ROUTE

P-3 Flight pattern: Late genesis

HURRICANE EVACUATION ROUTE

"Box-spiral pattern"

Pattern time 5.33 h

P-3 Flight pattern: post-genesis/intensification HURRICANE

ROUTE

P-3 Flight pattern: modules

HURRICANE EVACUATION ROUTE

"Convective burst module"

G-IV Flight pattern: SAL experiment

