Total Lightning Measurements of Tropical Precipitating Systems

CAMEX Workshop
13-15 March 2002

Principal Investigator: Richard Blakeslee, NASA/MSFC/NSSTC
Co-Investigators: Douglas Mach, Univ. of Alabama in Huntsville
Monte Bateman, USRA/NSSTC
CAMEX-4 Electrical Measurements
Research Objectives

Support overarching science objective

Observe and explain the structure of convection in tropical cyclones and hurricanes and how the strength and structure changes immediately before and after landfall.
CAMEX-4 Electrical Measurements

Research Objectives

Specific questions pertaining to electrical conditions

- Can lightning provide cues for intensification and storm track forecast (presence of lightning may indicate changes underway)?
- Can lightning serve as useful aid in identifying flood producing rainfall following landfall?
- How are kinematic/microphysical properties of electrically active clouds different from less active clouds (also land vs. ocean convection)?
- What are the electrical properties of precipitating bands in tropical convection and how do they relate to storm microphysics?
- Why are some rainbands more electrically active than others?
Lightning Instrument Package (LIP)
NASA High Altitude ER-2

Instrumentation
- Electric Field Mills (8)
- Conductivity Probe

Measurements
- Vector components of electric field \((E_x, E_y, E_z)\)
- Aircraft Charge
- Air conductivity
- Lightning statistics (derived using field changes)
- Storm electric currents
- Storm charge structure

Measurement Range / Accuracy
- Electric Field: few V/m to hundreds’s of kV/m 5 - 10%
- Conductivity: \(10^{-13} \text{ to } 10^{-11} \text{ mhos/m}\) 5 - 10%
Lightning Instrument Package (LIP)
NASA Medium Altitude DC-8

Instrumentation
- Electric Field Mills (6)
- High voltage “Stinger” (calibration of enhancement factors)

Measurements
- Vector components of electric field \((E_x, E_y, E_z)\)
- Aircraft Charge
- Lightning statistics (from field changes, optical transients)
- Storm electric currents (when used with ER-2 measurements)
- Storm charge structure

Measurement Range / Accuracy
- Electric Field: \(<1 \text{ V/m} \text{ to } 10^6 \text{ V/m}\)
 10 - 20\%
LIP Campaign Summary

• Instrument performed well entire program.

• Several interesting thunderstorm flights acquired.

• Most Hurricane overflights showed only weakly electrified conditions.

• Preliminary electric field calibration done; will continue refining.

• Plan to integrate LIP electrical measurements with other sensors.
Summary of electrical activity

<table>
<thead>
<tr>
<th>Date</th>
<th>Sortie</th>
<th>Description</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 Aug 2001</td>
<td>01-131, 10406</td>
<td>Overflight of Andros and FL Keys</td>
<td>Two small storms: 1830-1845 and 1910-1920</td>
</tr>
<tr>
<td>20 Aug 2001</td>
<td>01-132, 10407</td>
<td>Tropical Storm Chantal</td>
<td>Storms throughout (2000-2300)</td>
</tr>
<tr>
<td>25 Aug 2001</td>
<td>10408</td>
<td>Buoy overflight (central FL coast)</td>
<td>No thunderstorms</td>
</tr>
<tr>
<td>26 Aug 2001</td>
<td>01-133</td>
<td>Buoy overflight (central FL coast)</td>
<td>Weak (distant?) cells (1830-1915)</td>
</tr>
<tr>
<td>3 Sept 2001</td>
<td>01-134, 10409</td>
<td>Gulf storms</td>
<td>Two small storms: 1640-1650 and 1700-1715</td>
</tr>
<tr>
<td>6 Sept 2001</td>
<td>10410</td>
<td>Overflight FL and GA east coast</td>
<td></td>
</tr>
<tr>
<td>7 Sept 2001</td>
<td>01-135, 10411</td>
<td>Stratiform precipitation over Gulf</td>
<td>Storms throughout (1700-2000)</td>
</tr>
<tr>
<td>9 Sept 2001</td>
<td>01-136, 10412</td>
<td>KAMP</td>
<td>Three storms 1645-1700, 1710-1740, and 1820-1850</td>
</tr>
<tr>
<td>10 Sept 2001</td>
<td>01-137, 10413</td>
<td>Hurricane Erin</td>
<td>Very weak electrification detected</td>
</tr>
<tr>
<td>15 Sept 2001</td>
<td>10414</td>
<td>Tropical Storm Gabrielle</td>
<td></td>
</tr>
<tr>
<td>16 Sept 2001</td>
<td>01-138</td>
<td>Hurricane Gabrielle</td>
<td>One small storm: 2200-2220</td>
</tr>
<tr>
<td>19 Sept 2001</td>
<td>01-139, 10415</td>
<td>KAMP</td>
<td>Storms throughout (1700-2000)</td>
</tr>
<tr>
<td>22 Sept 2001</td>
<td>01-140, 10416</td>
<td>Tropical Storm Humberto</td>
<td>Two small storms: 1930-1945 and 2000-2215</td>
</tr>
<tr>
<td>23 Sept 2001</td>
<td>01-141, 10417</td>
<td>Hurricane Humberto</td>
<td>Very weak electrification detected</td>
</tr>
<tr>
<td>24 Sept 2001</td>
<td>01-142, 10418</td>
<td>Hurricane Humberto</td>
<td>Very weak electrification detected</td>
</tr>
</tbody>
</table>
Example of thunderstorm observations

ER-2 electric field observation of embedded convection on 7 Sept. 2001 (i.e., 9-10 electrified storms overflown)
Total Lightning Measurements of Tropical Precipitating Systems

ER-2 LIP Data Plots

CAMEX Workshop
13-15 March 2002

Principal Investigator: Richard Blakeslee, NASA/MSFC/NSSTC
Co-Investigators: Douglas Mach, Univ. of Alabama in Huntsville
Monte Bateman, USRA/NSSTC
Summary of electrical activity

<table>
<thead>
<tr>
<th>Date</th>
<th>Sortie</th>
<th>Description</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 Aug 2001</td>
<td>01-131, 10406</td>
<td>Overflight of Andros and FL Keys</td>
<td>Two small storms: 1830-1845 and 1910-1920</td>
</tr>
<tr>
<td>20 Aug 2001</td>
<td>01-132, 10407</td>
<td>Tropical Storm Chantal</td>
<td>Storms throughout (2000-2300)</td>
</tr>
<tr>
<td>25 Aug 2001</td>
<td>10408</td>
<td>Buoy overflight (central FL coast)</td>
<td>No thunderstorms</td>
</tr>
<tr>
<td>26 Aug 2001</td>
<td>01-133</td>
<td>Buoy overflight (central FL coast)</td>
<td>Weak (distant?) cells (1830-1915)</td>
</tr>
<tr>
<td>3 Sept 2001</td>
<td>01-134, 10409</td>
<td>Gulf storms</td>
<td>Two small storms: 1640-1650 and 1700-1715</td>
</tr>
<tr>
<td>6 Sept 2001</td>
<td>10410</td>
<td>Overflight FL and GA east coast</td>
<td></td>
</tr>
<tr>
<td>7 Sept 2001</td>
<td>01-135, 10411</td>
<td>Stratiform precipitation over Gulf</td>
<td>Storms throughout (1700-2000)</td>
</tr>
<tr>
<td>9 Sept 2001</td>
<td>01-136, 10412</td>
<td>KAMP</td>
<td>Three storms 1645-1700, 1710-1740, and 1820-1850</td>
</tr>
<tr>
<td>10 Sept 2001</td>
<td>01-137, 10413</td>
<td>Hurricane Erin</td>
<td>Very weak electrification detected</td>
</tr>
<tr>
<td>15 Sept 2001</td>
<td>10414</td>
<td>Tropical Storm Gabrielle</td>
<td></td>
</tr>
<tr>
<td>16 Sept 2001</td>
<td>01-138</td>
<td>Hurricane Gabrielle</td>
<td>One small storm: 2200-2220</td>
</tr>
<tr>
<td>19 Sept 2001</td>
<td>01-139, 10415</td>
<td>KAMP</td>
<td>Storms throughout (1700-2000)</td>
</tr>
<tr>
<td>22 Sept 2001</td>
<td>01-140, 10416</td>
<td>Tropical Storm Humberto</td>
<td>Two small storms: 1930-1945 and 2000-2215</td>
</tr>
<tr>
<td>23 Sept 2001</td>
<td>01-141, 10417</td>
<td>Hurricane Humberto</td>
<td>Very weak electrification detected</td>
</tr>
<tr>
<td>24 Sept 2001</td>
<td>01-142, 10418</td>
<td>Hurricane Humberto</td>
<td>Very weak electrification detected</td>
</tr>
</tbody>
</table>
Calibration of an Airborne Field Mill Array

- Each field mill output can be considered as a linear sum of the external electric field and field due to charge on the aircraft:
 \[m_i = M_{xi}E_x + M_{yi}E_y + M_{zi}E_z + M_{qi}Q \]
 (a)
- The set of equations (a) for all mills on an aircraft can be represented as a matrix equation:
 \[m = M\mathbf{E} \]
 (b)
 where \(m \) (mill outputs) & \(\mathbf{E} \) (vector electric field and field due to charge on the aircraft) are vectors, and \(M \) is a 6x4 matrix
- To determine the electric field \(\mathbf{E} \) from the mill outputs \(m \), we need the 4x6 matrix \(C \) which satisfies the equations:
 \[\mathbf{E} = C^T m \]
 (c)
 \[C^T M = I \]
 (d)
 where \(I \) is the 4x4 identity matrix
- Although we need \(C \) to determine \(\mathbf{E} \) from the mill outputs, \(m \), the unique properties of the \(M \) matrix drive our method
 - There is only one \(M \), that satisfies (b) for all possible values of \(\mathbf{E} \) and \(m \)
 - In the process of determining \(C \) from \(M \), we can manipulate the inverse to emphasize or de-emphasize individual mills in the determination of \(\mathbf{E} \)
- To determine \(M \), we follow a “cookbook” type procedure:
 1) Estimate \(M \)
 2) Determine \(C \) from \(M \)
 3) Calculate the estimated \(\mathbf{E} \) from \(C \) and \(m \)
 4) “Fix” \(\mathbf{E} \) based on knowledge of flight conditions
 5) Use “fixed” \(\mathbf{E} \) and \(m \) to determine new \(M \)
 6) Repeat
 7) Final \(M \) scaling
 8) Invert final \(M \) to produce \(C \)
 9) Use equation (c) to determine \(\mathbf{E} \) from \(C \)
Priority Days (first tier)
ER-2 Electric Fields

Sortie: 132 Day: 232 = 20 Aug 2001 (High Gain; prelim. cal. applied)
ER-2 Electric Fields

Sortie: 135 Day: 250 = 07 Sep 2001 (High Gain; prelim. cal. applied)
ER-2 Electric Fields

Sortie: 136 Day: 252 = 09 Sep 2001 (High Gain; prelim. cal. applied)
Priority Days (second tier)
ER-2 Electric Fields

Sortie: 131 Day: 230 = 18 Aug 2001 (High Gain; prelim. cal. applied)
ER-2 Electric Fields

Sortie: 134 Day: 246 = 03 Sep 2001 (High Gain; prelim. cal. applied)
ER-2 Electric Fields

Sortie: 138 Day: 259 = 16 Sep 2001 (High Gain; prelim. cal. applied)
Un- or weakly electrified cases
ER-2 Electric Fields

Sortie: 133 Day: 238 = 26 Aug 2001 (High Gain; prelim. cal. applied)
ER-2 Electric Fields

Sortie: 137 Day: 253 = 10 Sep 2001 (High Gain; prelim. cal. applied)
ER-2 Electric Fields

Sortie: 141 Day: 266 = 23 Sep 2001 (High Gain; prelim. cal. applied)
ER-2 Electric Fields

Sortie: 142 Day: 267 = 24 Sep 2001 (High Gain; prelim. cal. applied)