X-Band Polarimetric Radar Measurements of Rainfall in KAMP

Emmanouil N. Anagnostou
University of Connecticut
Provide high resolution rain rate and DSD retrievals from combination of polarimetric and Doppler radar data.

Investigate radar/radiometer rain retrieval techniques and quantify their error characteristics through physical validation.
XPOL System Overview

- 9.3 GHz H/V transmission at 50 KW peak power;
- NCAR’s transmitter/receiver system;
- 0.9 deg beam width; variable pulse length (60-400 m); 110 km max range

Measurement noise

Zdr calibration
XPOL System Overview

TOGA and WSR cal. assessment from PR

XPOL cal. ass. from TOGA

TOGA vs. XPOW
Bias=0.05 dB; STD=5.8; Cor=0.75
XPOL Data & Rain Products

Raw data (~25 GB)
→
Filtered & compressed data (~2.5 GB) → Data archive & V.1 data reading code
→
Φdp unfolding and filtering: Ψdp → V.2 data reading code (March 02)
→
Zh/Zdr attenuation correction & microphysical retrievals for selected cases (09/19; 09/26-28) → Rain rate and DSD products archive
Parameterizations derived from DSD data:

\[\frac{b}{a} = (1 + 0.05\beta) - \beta \cdot D \]

\[A_h = \gamma(\beta) \cdot K_{dp} \]

\[A_h = a \cdot N_w^{1-b} \cdot Z_h^b \]

\[A_{dp} = c \cdot N_w^{1-d} \cdot K_{dp}^d \]

\[D_0 = e \cdot \{Z_{DR} + A_{dp}\}^f \]

\[R = g \cdot N_w^{1-h} \cdot Z_e^h \]
Example cases for Sept. 19th @18:50 UTC

Zh (dBZ)

1.0°

4.5°

8.5°

Zdr (dB)

1.0°

4.5°

8.5°
Example cases for Sept. 19th @ 18:50 UTC
Comparison with DSD data from other experiments
Assessment of rain rate estimates

Polarimetric Algorithm:

$Kdp < 0.5: \frac{R}{Ah} = f(Zdn)$ & $Kdp > 0.5: R = f(Kdp)$

Instantaneous radar rain rate (mm/h)

Standard ZR: $R = f(Zh)$

Instantaneous radar rain rate (mm/h)

Rain rate from 1-minute DSD data (mm/h)

Radar rain rate (mm/h)

Ray case A

Ray case B

Ray case C

Ray case D

Radar range (km)
Use the Sept. 19th XPOL rain rate and DSD products with coincident airborne observations to investigate combined radar/radiometer retrievals.

For other storm cases (e.g., Sept. 27-28) in KAMP use coincident XPOL and dual-Doppler TOGA/SMART-R observations to do combined microphysics-kinematics tropical ocean precipitation studies.