CEILOMETER CT25K User's Guide

CT25K-U059en-2.1 26 February 1999 © Vaisala 1999

© Vaisala 1999

No part of this manual may be reproduced in any form or by any means, electronic or mechanical (including photocopying), nor may its contents be communicated to a third party without prior written permission of the copyright holder.

The contents of instruction manuals are subject to change without prior notice.

Contents

LIST OF FIGURESIV				
INTR	ODUC	TION TO MANUALVII		
VALI		OF THIS MANUAL VIII		
SAFE	SAFETY SUMMARYIX			
1.	GEN	NERAL INFORMATION1		
	1.1	Product Overview 1		
	1.2	Specifications31.2.1Mechanical31.2.2External Connector J1 - Window conditioner31.2.3External Connector J2 - Power input31.2.4Output Interface41.2.4.1External Connector J3 - Data line41.2.4.2External Connector J4 - Maintenance line61.2.5Modem Options61.2.5.1Modem board DMX5561.2.5.2Modem board DMX5071.2.5.3ANet™ Interface DMX61171.2.6Transmitter81.2.7Receiver81.2.8Optical System91.2.9Performance91.2.10Environmental Conditions9		
2.	INST	ALLATION		
	2.1	Unloading and unpacking		
	2.2	Foundation		
	2.3	Assembling the Unit		
	2.4	Using the Tilt Feature		
	2.4	Cable Connections		
	2.6	Grounding 16		
	2.7	Connection of Maintenance Terminal 17		
3.	STAF	RT UP 19		
	3.1	Start up procedure193.1.1Mobile operation aspects21		
	3.2	Verification of Proper Operation 21		
	3.3	Settings for Normal Operation 22		
	3.4	Factory settings of user programmable parameters		
4.	OPEF	RATION		
	4.1	Operation Modes 25		
	4.2	Serial Lines. Open and Closed Port 25		
	4.3 User Commands24.4 Data Messages3			

		4.4.1	Data Message No. 1	
		4.4.2	Data Message No. 2	.36
		4.4.3	Data Message No. 3	
		4.4.4	Data Message No. 4	
		4.4.5	Data Message No. 5	
		4.4.6	Data Message No. 6	
		4.4.7	Data Message No. 7	
		4.4.8	(Spare)	
		4.4.9	(Spare)	
		4.4.10	DMX611 operation (option)	
		4.4.11	Status Message "S"	
		4.4.12	Manual Message	
	4.5	-	de	
	4.6		parameter settings	
	4.7		gle setting	
5.	FUN	CTIONAL DE	ESCRIPTION	49
	5.1	Theory of (Operation	49
	5.2	Technical	Description	53
	0.2	5.2.1	General	
		5.2.2	LIDAR Measurement	
		5.2.3	Internal Monitoring and Control	
			-	
	5.3		scriptions	
		5.3.1	Optical Subassembly CTB22	.58
		5.3.2	Laser Transmitter CTT21	
		5.3.3	Receiver CTR21	
		5.3.4	Optics Monitor CTL21	
		5.3.5	Board Frame DMF51	
		5.3.6	Processor Board DMC50B	
		5.3.7	DC Converter DPS52	
		5.3.8	Ceilometer Interface Board DCT51	
		5.3.9	Line and Power Interface Subassembly CTP241	.70
		5.3.10	Internal Heaters Subassembly CT25039	
		5.3.11	Tilt Angle Sensor CT3675	
		5.3.12	Window Conditioner CT2614 / CT2688	
		5.3.13	Maintenance Terminal PSION3 (Option)	
		5.3.14	Modem DMX55 (Option)	
		5.3.15	Modem DMX50 (Option)	
		5.3.16	DMX611 ANet [™] Interface (Option)	
	5.4		ion Algorithm	
		5.4.1	General	
		5.4.2	Option code	
		5.4.3	Activation	
		5.4.4	Algorithm overview	
6.	PERI	ODIC MAIN		. 87
	6.1	Alarms and	d warnings	87
	6.2	Window Cl	eaning	87
	6.3	Battery che	eck	88
	6.4	Storage		. 88
7.	TRO	JBLESHOO	TING	89
	7.1	-	eration	
		7.1.1	Equipment	.89

		7.1.2	Instructions	89
	7.2	Troublesho 7.2.1 7.2.2 7.2.3	Doting Warnings Alarms Miscellaneous	93 96
	7.3	Failure Dia	gnosis	98
8. REPAIR			99	
	8.1	General		99
	8.2	Writing co	nventions used	99
	8.3	Start-up pr	ocedure for replacement (all parts)1	00
	8.4	Transmitte 8.4.1 8.4.2 8.4.3	r CTT211 Removal	01 02
	8.5	Receiver C 8.5.1 8.5.2 8.5.3 8.5.3.1 8.5.3.2	TR21 1 Removal 1 Replacement 1 Coaxial Cable Replacement 1 Removal 1 Replacement 1 Replacement 1 Image: State St	08 09 11 11
	8.6	Compensa 8.6.1	tion Fiber1 Compensation Fiber replacement1	
	8.7	Optics Mor 8.7.1 8.7.2	nitor CTL21	14
	8.8	Boards of 1 8.8.1 8.8.2 8.8.2.1	Board Frame DMF51 1 Removing boards 1 Replacing boards 1 Parameter settings of Ceilometer Interface board DCT51 1	16 17
INDE	8.9 X	8.9.1 8.9.2 8.9.3 8.9.4	ver Subassembly CTP241 1 Removal 1 Replacement 1 Internal Heater Subassembly CT25039 Replacement 1 Battery 4592 replacement instructions 1 Internal Heater Subassembly CT25039 Replacement 1 Battery 4592 replacement instructions 1	17 19 20 21
			·······	20

LIST OF FIGURES

Figure 1-1 Ceilometer CT25K
Figure 1-2 Data Line Connection Options5
Figure 2-1 Measurement Unit Handle10
Figure 2-2 Foundation Construction11
Figure 2-3 Mounting the Pedestal12
Figure 2-4 Attaching the Measurement Unit and the Shield
Figure 2-5 External Connectors (bottom view)15
Figure 2-6 Termination Box Wire Connections16
Figure 3-1 CT25K Switches and LEDs
Figure 4-1 Operation Modes
Figure 4-2 Open and closed port26
Figure 5-1 Typical Measurement Signal49
Figure 5-2 Measurement Unit Components
Figure 5-3 Subassembly Interconnections
Figure 5-4 Block Diagram of Operational Units
Figure 5-5 Optical Subassembly CTB22 with Optics Monitor, Transmitter and Receiver Subassemblies
Figure 5-6 CTT21 Block Diagram
Figure 5-7 CTR21 Block Diagram60
Figure 5-8 CTL21 Block Diagram61
Figure 5-9 DMF51 Frame62
Figure 5-10 DMC50B Block Diagram63
Figure 5-11 DIP Switch Settings of the DMC50
Figure 5-12 DPS52 Block Diagram67
Figure 5-13 DCT51 Block Diagram69
Figure 5-14 CTP241 Wiring71

Figure 5-15 CT25039 Wiring Diagram	72
Figure 5-16 CT3675 Tilt Angle Sensor	73
Figure 5-17 Window Conditioner CT2614/CT2688	74
Figure 5-18 RS Cable	75
Figure 5-19 DMX55 Block Diagram	76
Figure 5-20 DMX50 Block Diagram	78
Figure 5-21 DMX611 Block Diagram	80
Figure 8-1 Board Connectors of the DMF51 Board Frame	101
Figure 8-2 Removing the Laser Transmitter	102
Figure 8-3 Adjusting the compensation	106
Figure 8-4 Adjusting the compensation	107
Figure 8-5 Removing the Receiver	109
Figure 8-6 Removing the Optics Monitor	115
Figure 8-7 Boards of the DMF51 Board Frame	116
Figure 8-8 Removing Line and Power Interface Subassembly CTP241	119
Figure 8-9 Internal heater replacement	121
Figure 8-10 Battery replacement	122

This page intentionally left blank.

INTRODUCTION TO MANUAL

The purpose of this User's Guide is to be a general information source as well as a detailed operational guide for the user of Ceilometer CT25K.

This document is divided into 8 chapters. Chapter 1 offers an overview and technical specifications of the CT25K Ceilometer. The following chapters 2 and 3 contain installation and start up instructions. Operational instructions with user commands and data messages are included in chapter 4. Chapter 5 includes functional description of the Ceilometer and chapters 6, 7 and 8 instructions for maintenance, troubleshooting and repair.

VALIDITY OF THIS MANUAL

This manual covers ceilometer CT25K in all its configurations as defined by the parts and options listed in section 1.1, running under software revision

CT25K- 2.01 or 2.01a

Table 1-1 lists the revision history that may apply in comparison to other units in use:

Software revisions	Description
CT25K-1.01	First Release
CT25K-1.02	Intermediate release (not in use)
CT25K-1.03	Intermediate release (not in use)
CT25K-1.04	Production rev. 95-05-1597-02-03
CT25K-1.04h	Special rev. with Qualimetrics and
	DR21 messages
CT25K-1.05	Production rev. 97-02-03
CT25K-2.00	Production rev. 97-11-01
CT25K-2.01	Production rev. 98-03-17
CT25K-2.01a	Production rev. 99-02-09

Table 1-1 Software Revisions

Table 1-2 lists the hardware history that may apply in comparison to other units in use:

Hardware history	Description
CT25K model A	First Release
CT25K model B	Enclosure CT1669 replaced with CT15035.
	Model A pedestal CT2665 (Fiberglass) is option
	New Metal Pedestal CT25106 is standard.
	Line and Power Interface Subassembly CTP21
	changed to CTP241.
	Internal Heaters Subassembly CT2690 replaced
	with CT25039.
CTB22	Replaces CTB21 since 97-05-26
DMC50B	Replaces DMC50A since 97-11-05
DPS52	Replaces DPS51

Table 1-2 Hardware History

SAFETY SUMMARY

The following safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. VAISALA assumes no liability for the customer's failure to comply with these requirements.

LASER SAFETY

The CT25K is officially certified as a Class 1 laser device in accordance with European standard EN 60 825-1:1994. It is also classified in accordance with U.S. regulation 21 CFR 1040 as a Class 1 laser device. This means that a CT25K Ceilometer installed in a field environment with instrument covers on and pointed vertically or near-vertically poses no established biological hazard to humans.

The device is equipped with the following label:

The instrument is intended for operation in an area restricted from public access, and to be pointed vertically or near-vertically up. The following precautions are to be noted and followed during service and maintenance of the instrument:

- Never look directly into the Laser Transmitter with magnifying optics (glasses, binoculars, telescopes, etc.)
- When operating, avoid looking at the ceilometer unit from the beam direction. When tilting the unit, make sure that it is not being viewed from the beam direction with magnifying optics.
- Only trained personnel should perform maintenance functions. Work area access by unauthorized persons during service operations must be prevented.

GROUND THE INSTRUMENT

To minimize shock hazard, the instrument chassis and cabinet must be connected to an electrical ground. The instrument is equipped with a three-conductor AC power connector. The power cable must either be plugged into an approved three-contact electrical outlet or the instrument must be carefully earthed to a low-resistance safety ground.

DO NOT OPERATE IN AN EXPLOSIVE ATMOSPHERE

Do not operate the instrument in the presence of flammable gases or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.

DO NOT SERVICE OR ADJUST ALONE

Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.

DO NOT SUBSTITUTE PARTS OR MODIFY INSTRUMENT

Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification to the instrument. Return the instrument to a VAISALA office or authorized Depot for service and repair to ensure that safety features are maintained.

KEEP AWAY FROM LIVE CIRCUITS

Operating personnel must not remove instrument covers. Component replacement and internal adjustments must be made by qualified maintenance personnel. Do not replace components with power cable connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, always disconnect power and discharge circuits before touching them.

High voltage will be readily accessible when the transmitter (CTT21) or receiver (CTR21) covers are removed and they are connected to a powered unit. High voltage is present in the Line and Power Interface Subassembly (CTP241), the Internal Heaters subassembly, the Frame (DMF51) Mother Board, and the Window Conditioners at the top of the Shield.

Transmitter (CTT21), Receiver (CTR21), and Line and Power Input Subassembly (CTP241) have the following warning label:

WARNING! HIGH VOLTAGE INSIDE THIS ENCLOSURE

Internal Heaters Subassembly can be hot and has the following warning labels:

DANGEROUS PROCEDURE WARNINGS

Warnings, such as the example below, precede potentially dangerous procedures throughout this manual. Instructions contained in the warnings must be followed:

WARNING

Dangerous voltages, capable of causing death, are present in this instrument. Use extreme caution when handling, testing, and adjusting.

CAUTION

The equipment contains parts and assemblies sensitive to damage by Electrostatic Discharge (ESD). Use ESD precautionary procedures when touching, removing or inserting. This page intentionally left blank.

1. **GENERAL INFORMATION**

1.1 **Product Overview**

Ceilometer CT25K measures cloud heights and vertical visibilities. The small and lightweight measurement unit suits well for mobile operation.

The CT25K Ceilometer employs pulsed diode laser LIDAR technology (LIDAR = Light detection and ranging), where short, powerful laser pulses are sent out in a vertical or near-vertical direction. The reflection of light - backscatter - caused by haze, fog, mist, virga, precipitation and clouds is measured as the laser pulses traverse the sky. The resulting backscatter profile, i.e. signal strength versus height, is stored and processed and the cloud bases are detected. Knowing the speed of light, the time delay between the launch of the laser pulse and the detection of the backscatter signal indicates the cloud base height.

The CT25K is able to detect three cloud layers simultaneously. Besides cloud layers it detects whether there is precipitation or other obstructions to vision. No adjustments in the field are needed. The embedded software includes several service and maintenance functions and gives continuous status information from internal monitoring. The software is designed to give the full backscatter profile.

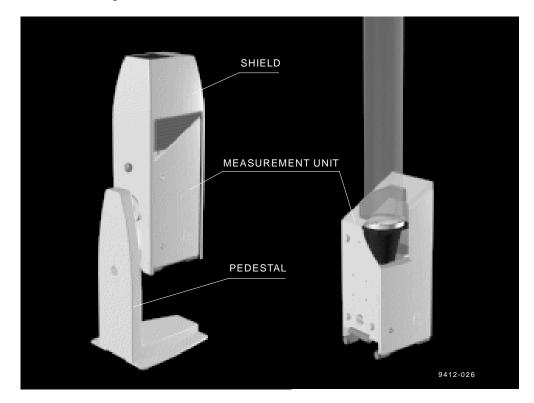


Figure 1-1 Ceilometer CT25K

Ceilometer CT25K consists of three main parts (Figure 1-1):

- 1. Measurement Unit including
 - Optical Subassembly CTB22
 - Laser transmitter CTT21
 - Receiver CTR21
 - Optics Monitor CTL21
 - Frame DMF51 including
 - Processor Board DMC50B
 - DC Converter DPS52
 - Ceilometer Interface Board DCT51
 - Modem (optional)
 - Line and Power Interface Subassembly CTP241
 - No-Break Battery
 - Internal Heaters Subassembly CT25039
 - Tilt Angle Sensor CT3675
 - Internal Cables etc.
- 2. Shield including
 - Built-in Window Conditioner CT2614/CT2688 (warm air blower)

options - 220...240 VAC (CT2614) - 100...115 VAC (CT2688)

3. Pedestal

- Metal pedestal CT25106 is standard. For off-shore applications it is recommended to use fiberglass pedestal CT2665.

The complete delivery also includes mating cables with connectors for power and communication, installation hardware, an Allen key, a triangle key for the Measurement Unit door and this CT25K User's Guide.

In addition, the following options may be included in the delivery:

- Maintenance Terminal (Palmtop computer) PSION3
 - connected to Measurement Unit at the external connector J4 via RS-232 interface
- Termination Boxes (2) for Line Power CT3709 (external connector J2) and Communication Cable CT3707 (external connector J3) connections
- Tropics Window CT35043 on Measurement Unit instead of Standard Window to protect the laser from direct sun radiation.
- Optical Termination Hood CT25184 for indoor service use

- Shock Absorber CT35022 for ship installations
- PC Terminal cable CT35198 to connect the connector of the RS-232 port of the PC to the maintenance port

1.2 Specifications

1.2.1 Mechanical

Dimensions:

Measurement unit	760 x 280 x 245 mm (30 x 11 x 10 in.)
Height with shield and pedestal	1320 mm (52 in.)
Weight:	
Measurement unit	17 kg (37 lb.)
Shield	10 kg (22 lb.)
Metal pedestal	8 kg (17 lb.)
Fiberglass pedestal (option)	13 kg (28 lb.)
Cardboard transport container size	1170 x 740 x 430 mm (46 x 29 x 17 in.)
Cardboard transport container weight	51 kg (111 lb.)
Plywood transport container size	1240 x 760 x 450 mm (49 x 30 x 18 in.)
Plywood transport container weight	70 kg (152 lb.)

1.2.2 External Connector J1 - Window conditioner

Connector J1:	Type Binder series 693, 09-4228-00-07 (female)
Mating connector type:	Type Binder series 693, 99-4225-70-07 7-pin (male) elbow

1.2.3 External Connector J2 - Power input

At nominal line voltage	115 V or 230 V
Power consumption (typical)	
Total	365 W
Measurement unit	15 W
Internal heater	120 W
Window conditioner heater	200 W
Window blower	30 W
Frequency	45-65 Hz

Power connector (J2):	Type Binder series 693, 09-4223-00-04 4-pin (male)
Mating connector type:	Type Binder series 693, 99-4222-70-04 (female) elbow
No-break power supply	12V Sealed Lead Acid Battery, 2 Ah
Overvoltage Protection	Low-press filter, VDR

1.2.4 Output Interface

The data port can operate according to the following serial line standards :

RS-232

RS-422

RS-485, multidrop, 2-wire / 4-wire

The data port can also be operated through DMX55 and DMX50 modems or ANet Bus interface DMX611.

The maintenance port is an RS-232 serial line, except when the data line is set to RS-422 or RS-485; then the maintenance line voltage levels become 0 and +5 V.

1.2.4.1 External Connector J3 - Data line

The data line is intended to be used for measurement data communication, but it can also be used with Ceilometer Maintenance Terminal, PC or other terminals.


Connector (J3): Mating connector type:	Type Binder series 693, 09-4227-00-07 7-pin (male) Type Binder series 693, 99-4226-70-07 (female) elbow
Baud Rate:	2400 baud standard with RS-232 300, 4800 and 9600 baud available 300 bit/s with modem DMX55 2400 bit/s standard with modem DMX50 300, 1200, 2400 bit/s available Data compression allows up to 9600 bit/s throughput
Max. Distance to Operate:	300m (1000 ft) with RS-232, 1.2 km (4000 ft) with RS-422 and RS-485, all at 2400 baud with typical communication cables 16 km (10 mi) with Modem

Standard Character Frame:	7 Da Even	art Bit ta Bits a Parity op Bit
Standard Character Code:	USA	SCII
Pin Connections	1 2 3 4 5 6	RD- / AN2Lo Modem Lead A / RxD / RD+ / AN1Hi Modem Lead B / TxD / SD+ / AN1Lo Signal Ground SD- / AN2Hi +12 V DC supply (200 mA max for 1 hour, 100 mA continuous, for external equipment)

Modem circuits are non-polar and symmetrical. All modem circuits are electrically floating to overvoltage protection rating (300V-500V).

Overvoltage Protection in each circuit:

Primary Noble Gas Surge Arrester Secondary VDRs, Transient Zener Diodes or normal Diodes

Figure 1-2 Data Line Connection Options

1.2.4.2 External Connector J4 - Maintenance line

Maintenance line is intended for on-site maintenance and can be used with Ceilometer Maintenance Terminal, PC or other terminal.

Connector (J3):	Type Binder series 693, 09-4224-06-04 4-pin (male)	
Mating connector type:	Type Binder series 693, 99-4221-70-04 (female) elbow	
Baud Rate:	2400 baud standard and default 300, 4800, 9600 baud available	
Distance to Operate:	300 m (1000 ft) at 2400 baud with typical communication cables	
Standard Character Frame:	1 Start Bit 7 Data Bits Even Parity 1 Stop Bit	
Standard Character Code:	USASCII	
Pin Connections	 RxD / RD+ (05 V) TxD / SD+ (05 V) +12 V DC supply from internal battery (100 mA continuous, 200 mA max.) Signal Ground / Equipment Ground 	

Overvoltage Protection in each circuit:

Primary Noble Gas Surge Arrester Secondary VDRs, Transient Zener Diodes or normal Diodes

1.2.5 Modem Options

1.2.5.1 Modem board DMX55

ITU-T V.21 / Bell 103 full duplex modem interface for serial asynchronous data interchange

Data Rate:	300 bit/s

Modulation method: FSK

Rell 103

V 21

Answer Mode Standard Frequencies:

		V.41	Den 105
	Mark (1)	1650 Hz	2225 Hz
	Space (0)	1850 Hz	2025 Hz
Originate Mode Optional			
Signal Level:	-10 dBm (0.3 V) into (Jumper selectable)	600 Ohm s	standard
Max. Distance to Operate	016 km (010 mile with 22 AWG (0 twisted pair	,	unshielded

The signal circuit is electrically floating to overvoltage protection rating (300V-500V).

1.2.5.2 Modem board DMX50

Processor:	Intel 80C32 custom version
Modem:	Signal Processor Chip Silicon Systems SSI 73K224L
Modem standards supported:	V.21/ V.22/ V.22bis and Bell 103, Bell 212
Modulation method:	300 FSK/ 1200 DPSK/ 2400 QAM

Compression & error correction: V. 42, V.42bis and MNP 2-5

Adaptive equalization for optimum performance over all lines.

1.2.5.3 ANet[™] Interface DMX611

The DMX611 serves as an interface between the CT25K and Vaisala proprietary ANet and INet busses.

Baud Rate	2400
Signal Level	0 dBm
Max. Distance to Operate	05 km multi-drop network Twisted pair 22 AWG
Standard Character Frame	8 Bit synchronous
Character Code	Binary
iNet protocol	Packet format.

1.2.6 Transmitter

Laser Source:	Indium Gallium Arsenide (InGaAs) Diode Laser
Center Wavelength:	905 ± 5 nm at 25 °C (77 °F)
Operating Mode:	Pulsed
Nominal Pulse Properties at Fu Energy: Peak Power: Width, 50%:	 All Range Measurement: 1.6 μWs ± 20% (factory adjustment) 16 W typical 100 ns typical
Repetition Rate:	5.57 kHz
Average Power:	8.9 mW (full range measurement)
Max Irradiance:	170 $\mu W/cm^2$ measured with 7 mm aperture
Laser Classification:	Officially certified as Class 1 laser device in accordance with EN 60 825-1:1994 Class 1 in compliance with FDA CFR 1040.10 (Subsection e,3)
Laser Source Geometry:	Five-stack, 0.4 mm (16 mil) square
Beam Divergence:	±0.53 mrad edge, ±0.75 mrad diagonal
1.2.7 Receiver	
Detector:	Silicon Avalanche Photodiode (APD) Responsivity at 905 nm: 65 A/W (factory adjustment)
Surface Diameter:	0.5 mm (0.02 in.)
Interference Filter:	Center wavelength 908 nm typical
50% Pass Band:	35 nm at 890-925 nm typical
Transmissivity at 905 nm:	80 % typical, 70 % minimum
Field-of-View Divergence:	$\pm 0.66 \text{ mrad}$

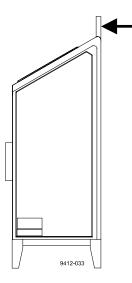
1.2.8 Optical System

Optics System Focal Length:	377 mm (14.8 in.)
Effective Lens Diameter:	145 mm (5.7 in.)
Lens Transmittance:	96 % typical
Window Transmittance:	98 % typical, clean
1.2.9 Performance	
Measurement Range:	025,000 ft. (07.5 km)
Resolution:	50 ft
25,000 ft. Acquisition Time:	min. 15 s max. 120 s
Receiver Bandwidth:	3 MHz (-3db)
1.2.10 Environmental Conditions	

Ambient Temperature:	-50+60 °C (-60+140 °F)
Humidity:	to 100 %RH
Wind:	to 100 kt (50 m/s)
Vibration:	0.5 g 5 - 500 Hz

2. INSTALLATION

NOTE


Before the installation, make sure that the CT25K configuration, especially line voltage setting, is in compliance with local circumstances. Information about the CT25K configuration in question is included in the delivery.

2.1 Unloading and unpacking

The CT25K is shipped in one container containing the Measurement Unit, Shield and Pedestal, and all equipment, accessories and documentation needed for carrying out the installation. Store the original packaging for possible later transport need.

For opening, the package is to be placed on a flat surface with the indicated top side up. The container is opened from the top side and the ceilometer including all other parts are carefully removed.

- Use proper gloves for protection against sharp edges, etc.
- Avoid touching the window or lens surfaces unless cleaning according to instructions.
- Maintain the integral protective caps on the unused external connectors (J3 Data line or J4 Maintenance line).
- Use the measurement unit handle for lifting and carrying (Figure 2-1).

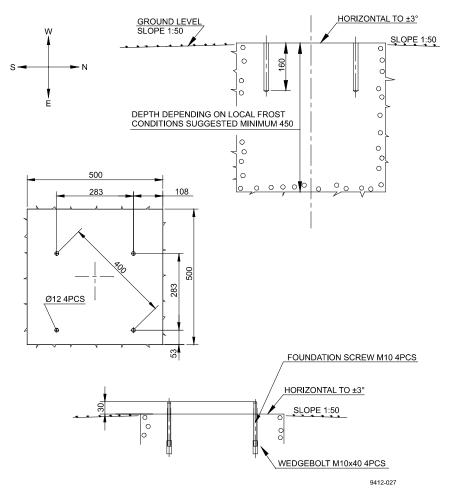


Figure 2-1 Measurement Unit Handle

If mishandling occurs during transit or installation, the instrument should be returned to a VAISALA office or authorized Depot for inspection.

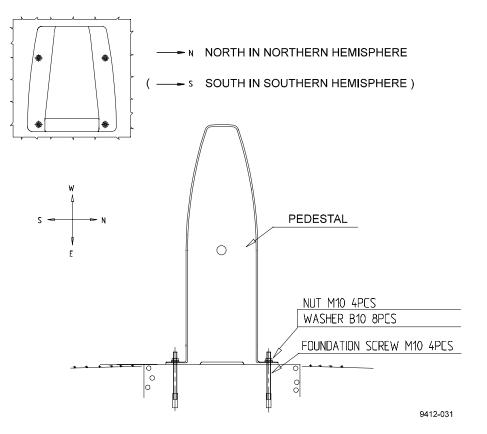
2.2 Foundation

The standard foundation for the CT25K ground installation is a concrete foundation. The minimum dimensions suggested are presented in Figure 2-2. Mounting hardware is included with the delivery.

Figure 2-2 Foundation Construction

There are two alternative ways to make a foundation: to cast a new or to use an existing foundation.

- If a new foundation is laid, the M10x40 Wedge Bolts and Foundation Screws (4 each), are suggested to be cast into the concrete so that approx. 30 mm (1.25 in.) of the foundation screw threads stand above the surface.
- If an existing foundation is used, four holes of diameter 12 mm and depth 165 mm (0.5 x 6.5 in.) are drilled into the concrete. The Wedge Bolt and Foundation Screw combinations are placed in the holes, with Wedge Bolts down; the protruding threads are alternately hammered and tightened a few times so that the Wedge Bolts attach to the hole walls.


In case the CT25K replaces a CT12K Ceilometer, the existing foundation and screws can be used.

If the tilt feature will be used (see section 2.4), observe this in the layout of the foundation screws and pedestal placement.

2.3 Assembling the Unit

The CT25K Ceilometer is assembled in four stages:

- 1. Mount the pedestal on the foundation.
- 2. Attach the measurement unit to the pedestal.
- 3. Mount the shield on the measurement unit.
- 4. Connect the external cables.
- 1. Place the Pedestal on the foundation (or equivalent installation place) so that the vertical leg of the pedestal faces East in the Northern hemisphere, and West in the Southern hemisphere.

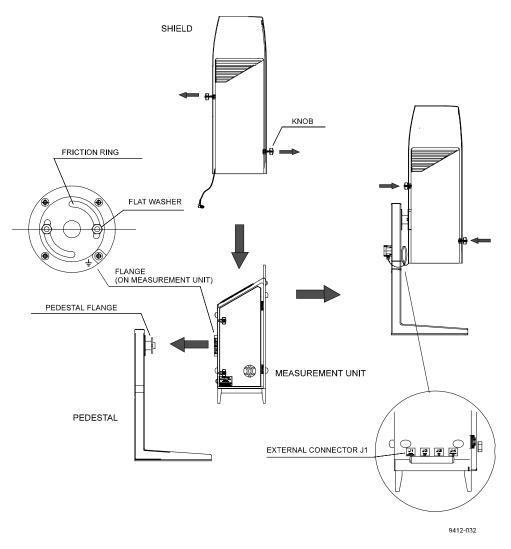


Figure 2-3 Mounting the Pedestal

If the tilt feature will be used (see section 2.4.), observe this in the layout of the foundation screws and pedestal placement. Place the flat washers on the foundation screws and fix the nuts (Figure 2-3).

2. Start mounting the measurement unit by rotating the friction ring of the flange to the position shown in Figure 2-4 (the screw holes horizontally). Remove the Allen head screws (2 pcs) and flat washers.

Place the measurement unit on the pedestal flange. Attach the pedestal flange to the measurement unit by the two Allen head screws with flat washers. An Allen key is included in the delivery.

Figure 2-4 Attaching the Measurement Unit and the Shield

3. Before placing the shield pull the knobs (pidgeon blue) on the shield outwards. Place the shield carefully on the Measurement Unit; be careful with the Window Conditioner cable. Tighten the two attachment knobs (Figure 2-4).

Before connecting the Window Conditioner cable check that the voltage rating of the Window Conditioner (written at its connector) is correct. Connect the Window Conditioner cable plug of the shield to the measurement unit external connector J1.

Connect external cables according to section 2.5.

2.4 Using the Tilt Feature

The Measurement Unit and Pedestal of Ceilometer CT25K are designed so that the unit can operate in a tilted direction. The built-in tilt angle sensor CT3675 detects the tilt angle, i.e. deviation from the vertical. The tilt angle ranges from -15 to +90 degrees from vertical; the angle is positive when the measurement unit door turns towards the ground. The cosine of the tilt angle is used for automatic correction of the detected cloud base height, which enables accurate cloud base measurements also in a tilted direction.

Several advantages can be realized with the aid of this feature:

• Heavy weather conditions

Using a slight tilt angle for instance 15 degrees, the measurement unit window is kept better protected from precipitation, thus enhancing the availability of correct measurements in heavy weather conditions.

• Aircraft approaches

The beam can be directed towards a direction, which better represents the approach of an aircraft than the straight vertical. Useful e.g. for helicopter approaches, and sites where the ceilometer cannot be located exactly at the desired spot.

• Hard target and testing purposes

Tilting the unit down by 90 degrees permits verification of operation against a hard target at a known distance. Useful in connection with installation and maintenance. Enables real backscatter signal detection when there are no clouds in the sky.

WARNING

Make sure that nobody is viewing the unit from the beam direction with magnifying optics!

• Maintenance

By tilting the unit back -15 degrees, better access is gained to the interior during maintenance.

• In the tropics

Between the latitudes of ± 25 degrees, where the sun can be straight above the unit, a slight tilting prevents the laser from direct sun radiation, which would otherwise destroy the laser. The other alternative is to use a tropics window on the measurement unit instead of a standard window. As these advantages are partly contradictory and cannot or need not all be realized, the user must decide the final installation direction. In doing so, the following must be observed:

NOTE

Unless a tropics window is used, the unit must never be directed so that the sun shines directly into the optics, because the lens will focus all radiation into a very hot spot.

2.5 Cable Connections

All external connectors to the Measurement Unit are located at the bottom left edge as seen from the door direction. Figure 2-5 shows the external connectors J1, J2, J3 and J4.

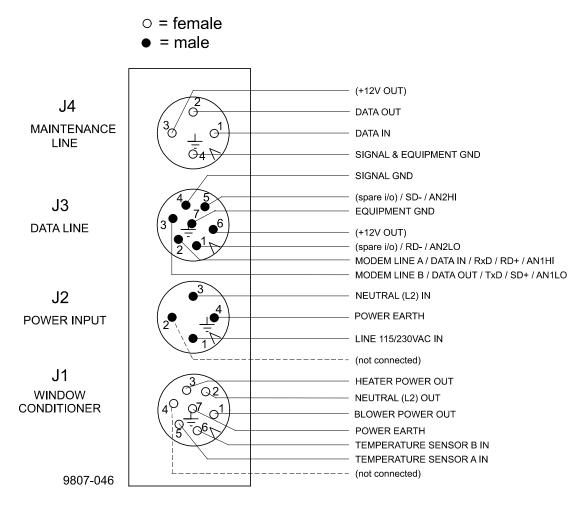
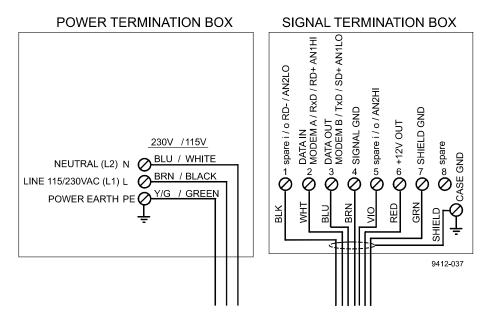


Figure 2-5 External Connectors (bottom view)


- The Window Conditioner (warm air blower) mounted in the Shield is permanently connected to J1.
- Line Power input is connected to J2.

- Remote communication is normally connected to J3.
- A local maintenance terminal, for example PSION3, is intended to be connected to J4. A protective cap is included for covering J4 when not in use.

External mating connectors with 2 m (7 ft.) cable are included for J2 and for J3. The power plug of the J2 cable can be cut when the unit is permanently installed at the final site.

The cables for J2 and J3 are intended to be drawn through the hole of the pedestal to the connectors. Provide sufficient slack for permitting the unit to be tilted later.

Figure 2-6 shows the connecting signal leads with optional Power and Signal Termination Boxes.

Figure 2-6 Termination Box Wire Connections

Suggested wire dimensions for the external cabling are:

Line Power Supply:	3 x 1.5 mm ² (AWG 16)
Remote Communication:	0.35 mm^2 (AWG 22) twisted pair with shield

NOTE

When permanent line power installation is made, the maximum size of the fuse protecting the power line is 10 A

2.6 Grounding

The power supply connector J2 provides a standard protective ground for the instrument chassis.

The CT25K is equipped with a separate grounding screw on the measurement unit flange for external earthing (see Figure 2-4).

CONNECTION TO A SOLID EARTH GROUND AT THE INSTALLATION SITE IS MANDATORY FOR ADEQUATE LIGHTNING AND TRANSIENT PROTECTION.

2.7 Connection of Maintenance Terminal

Any terminal or PC with serial interface and terminal emulation program can be used for operation and maintenance of the CT25K Ceilometer. A standard Maintenance Terminal option is offered including the following components:

- Palmtop Computer PSION3
- RS cable (RS-232 Interface)
- Terminal Cable CT3840
- Technical Manuals for the Palmtop Computer

Setting up PSION3

To set up PSION3 for communication for the first time the following steps are needed. These settings must be done with the RS cable attached to PSION3. The PSION3 has two normal Mignon AA batteries, which enable operation for twenty hours.

- 1. Connect the RS cable to the PSION3 computer.
- 2. Press the System icon to start the computer.
- 3. Press the "Menu" key to get the menu on the screen.
- 4. Select the "Install" from the "Apps" menu.
- 5. Use cursor keys to move to the "Disk" line and to the "C" disk.
- 6. See that the "File: Name" line has "Comms.app". If the line does not have it add it by typing and press ENTER.

A new icon "Comms" is now installed and can be seen on the System screen. The terminal emulation is ready.

- 7. Choose "Comms" from System screen and press ENTER to start it.
- 8. Press the "Menu" key and set "Port" from "Special" menu as follows:

Baud rate	2400
Data bits	7
Stop bits	1
Parity	Even
Ignore parity	Yes

9. Exit from "Comms" and select "Save the Setting" from "File" menu by name "CT25K".

Now there should be the text "CT25K" under the "Comms" application. From now on PSION3 is ready to communicate with CT25K whenever "CT25K" from the "Comms" application is chosen.

Connecting PSION3 to CT25K

Connect the cables as follows:

- 1. Connect the Terminal Cable CT3840 to the external connector J4 of the Ceilometer.
- 2. Connect the RS cable to the Maintenance Cable
- 3. Connect the RS cable to the PSION3 computer.

Operation

Turn on both equipments, the CT25K and the PSION3 computer.

- 4. PSION3 is turned on for normal operation by pressing the key "Esc" or by pressing the special "Psion" key $(\underline{\cup})$ together with "ON".
- 5. PSION3 is turned off by pressing the "Psion" key (\bigcup) and "OFF"

Choose the configuration CT25K from the System screen and press ENTER. The terminal is now ready for dialogue communication with the ceilometer. Start the program by pressing ENTER. The prompt "CT: "should appear on the screen. If not, check the cables and port settings (see Setting up PSION3 above).

The port has to be opened by command "OPEN" for giving commands. The prompt CEILO> should appear. See Chapter 4 Operation.

For more information about communication see PSION3 manual included in the delivery.

3. START UP

3.1 Start up procedure

Open the unit door; the key is included in the delivery. Make a visual check of the internal connectors, subassemblies, etc. Figure 3-1 describes the switches and LEDs needed to complete the start up procedure.

- 1. Turn the main circuit breaker F1 to "OFF" position.
- 2. Plug in the line supply cable to connector J2 after checking the voltage of the power supply cable connector.
- 3. Turn the Main Circuit Breaker F1 and the Battery Switch to the "ON" position. After initialization routines the following shall happen (LED = Light Emitting Diode):

DC Converter DPS52	LED D2 stable green
	LED D1 blinking yellow

In case the built-in battery is deeply discharged it may take hours before LED D2 goes on.

- 4. Processor Board DMC50B LED STATUS blinking at regular intervals (1 sec.)
- 5. Ceilometer Interface Board DCT51 green LED D4 goes on during the laser pulse train for about 12 seconds and is repeated according to the configuration in question. After power-up, it may take a couple of minutes before the unit starts normal operation.

If LEDs operate in a different way than described above, the unit may need service or maintenance. Refer to Chapter 7 Troubleshooting.

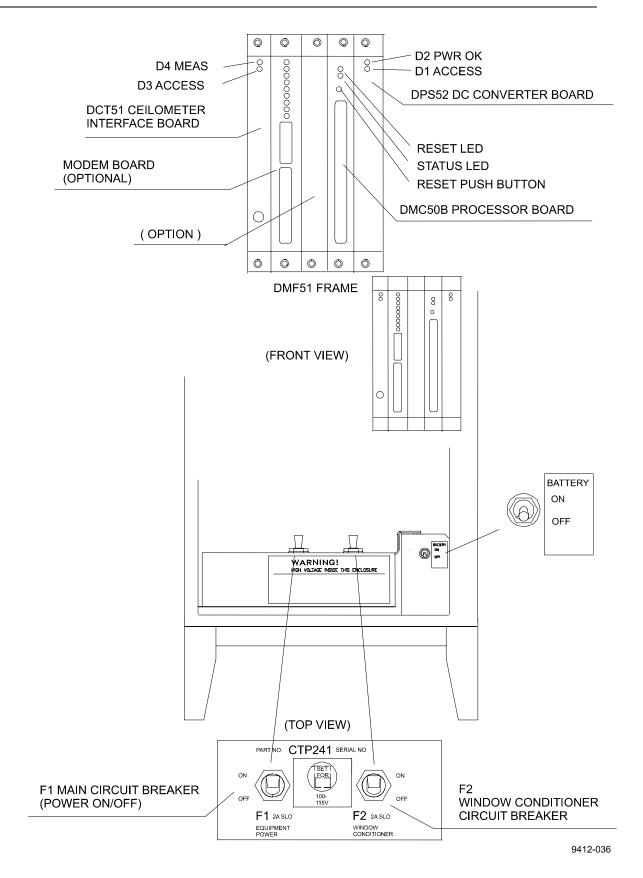


Figure 3-1 CT25K Switches and LEDs

3.1.1 Mobile operation aspects

The small and lightweight CT25K Ceilometer is suitable also for mobile operation. It has a built-in 12V battery, which enables operation without external power supply for about an hour in normal room temperature.

NOTE

For switching power to the CT25K fully OFF, turn also the Battery Switch OFF in addition to the line power switch. Having the unit ON with battery supply only will drain the battery.

NOTE

Do not attempt to carry a fully assembled unit alone. Lift the CT25K from Measurement Unit Base or Pedestal only (not from the shield). The three main parts - Measurement Unit, Shield and Pedestal - can be lifted and carried separately by one person.

3.2 Verification of Proper Operation

Proper operation of the Ceilometer can be checked with help of the maintenance terminal. Turn the power on. After 30-45 seconds ask for the status message with the command GET STATUS. Information about commands can be found in chapter 4 Operation. The message should not contain any warnings or alarms. In the opposite case see Chapter 7 Troubleshooting.

If a solid, stable cloud base is present at a range of 1,000-5,000 ft., and no fog or precipitation is present, a quick-check of the detection and the unit sensitivity can be carried out by observing the variable SUM on the third line of data message No.2. SUM indicates the sum of detected and normalized backscatter and its value should be in the range 150...200 if parameter SCALE has the standard value 100 %. See paragraph 4.4.2 for details.

If suitable clouds are not present for proper operation verification, the unit may be tilted towards a hard target at known distance. The minimum distance to the hard target should be at least 300 meters (1,000 ft.). Unexpected behavior is not totally excluded if e.g. a strong reflector saturates the receiver.

WARNING

When tilting the unit, make sure that nobody is watching it with binoculars or other magnifying optics.

3.3 Settings for Normal Operation

Switch settings for normal operation are as follows:

Main circuit breaker F1	ON
Window conditioner circuit breaker	ON
Battery switch	ON

Data message and interface configuration and the configuration of measuring interval and transmission speed are standard factory settings. When required, the settings can be changed by giving commands with the terminal.

During the factory alignment procedure, the optical adjustments are carefully carried out to fulfill the requirements and specifications of the device. Optical adjustments have been made at factory or depot, thus there is no need to readjust in the field.

3.4 Factory settings of user programmable parameters

Table 3-1 next page shows the standard factory settings of user programmable parameters. The prevailing parameter settings can be seen by the command

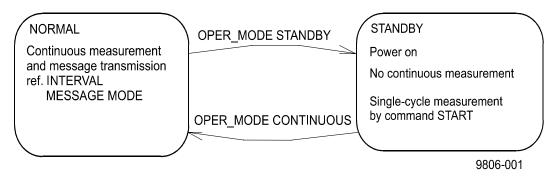
GET parameter_group

Parameter groups are displayed as bold text in table 3-1. As response to the command a list of parameters with prevailing parameter values is shown.

The standard factory-set parameter values, which may be changed by the user, are collected in the second column in table 3-1. The values displayed in the first column are factory settings that the user cannot change. For changing a value to the desired content and function, depending on the particular installation, the corresponding command is

SET parameter_group parameter

Response to User's Menu	Standard factory	Notes
commands	settings of User's	10005
	Menu parameters	
CEILO>get		
data_acq		
AUTOADJUSTMENTS:	ON	
DATA-ACQ. INTERVAL:	15 SEC.	15 120 seconds available
RECEIVER		
GAIN:	Н	
BANDWIDTH:	N	
SAMPLING RATE:	10 MHz	Constant
TRANSMITTER		
LENGTH OF PULSE:	L	
POWER OF PULSE:	188	Varies with unit, temperature, and
		age
QUANTITY OF PULSES:	64K	Constant
COMPENSATION		
COARSE COMPENSATION:	13	Varies with unit and
		contamination
FINE COMPENSATION:	125	Varies with unit and
		contamination
message		
MESSAGE		
ANGLE CORRECTION:	ON	Shall be ON if unit is operated
		tilted. May be ON even if unit is
		operated vertical. Option OFF will
		turn detected values into distances
		rather than heights.
HEIGHT OFFSET:	0	Insert installation height if signifi-
		cantly different from reference
		(zero) height, in reporting units.
MODE:	AUTOSEND	Option POLLING. Transmits date
		message only when polled.
NOISE H2 COMPENSATION:	OFF	Option: ON. Affects the visual appearance of message No. 2
		graphical presentation. Selection
		OFF gives less noisy appearance.
PROFILE SCALE:	100 %	Scales backscatter values of
I KOI ILL SCALE.	100 /0	message No. 2 and corresponding
		SUM value.
PORT:	DATA	Optional selection:
		MAINTENANCE.
TYPE:	MSG1	Message No. 1. Options: MSG2,
		MSG3, MSG6, MSG7 and
		Status (S).
UNITS:	FEET	Option: METERS. Note also
		HEIGHT OFFSET.
WARNING DELAY:	OFF	Option ON. Sets a 5 minutes delay
		for warning


Table 3-1 Factory parameter settings

oper_mode		
OPERATION MODE:	CONTINUOUS	Option STANDBY requires command START for carrying out each cycle.
options		
[MODEM NAME]	INSTALLED	Modem name is: DMX55, DMX50 or DMX611
SKY CONDITION:	INACTIVE	ACTIVE
HUMITTER:	INACTIVE	ACTIVE
BLOWER:	ACTIVE	INACTIVE
port		
MAINTENANCE PORT BAUDS:	2400, E71	Optional baud rates 300, 2400, 4800, 9600.
DATA PORT BAUDS:	300, E71	Optional baud rates 300, 1200, 2400, 4800, 9600. NOTE: Reverts to 300 if standard modem DMX55 is plugged in. 2400 is factory setting if this modem is not present.
MODEM:	CCITT (300) DMX50 V42 BIS MODE (1200-9600)	If modem DMX55 installed. Options: Bell 103 and ITU-T V.21. if modem DMX50 is installed. Options: Bell 103, Bell 212A, ITU-T V.21, ITU-T V.22, V42 MODE, V42 BIS MODE
MODEM STATUS:	ON	OFF
YOU ARE USING:	DATA PORT	Option: MAINTENANCE PORT
unit_id		
UNIT ID:	0	Insert 19, AZ if polling or message logging from several units requires separating identifiers

4. **OPERATION**

4.1 Operation Modes

There are two operation modes, continuous i.e. normal and standby. Commands OPER_MODE STANDBY and OPER_MODE CONTINUOUS are used to switch between the modes. In NORMAL mode continuous measurement and message transmission occurs according to chosen parameters. In STANDBY mode the wearing parts are turned off and it can be used e.g. during periods when measurement is not needed. It allows singlecycle measurement by command START.

Figure 4-1 Operation Modes

4.2 Serial Lines. Open and Closed Port

Two serial lines are provided, termed "MAINTENANCE" (external connector J4, Line/Port A at Processor Board) and "DATA" (external connector J3, Line/Port B at Processor Board). Line B is intended to be used for measurement data communication and can be operated through modem or baseband. Line A is intended for on-site maintenance access, and is used only baseband. However, functionally the operation of the lines is identical; the same commands, operations and messages operate through any of the lines, and the following description applies to both of them.

Factory default setting is 7 data bits, Even parity, 1 Stop bit, and for baseband lines, 2400 baud. Baud rate is selectable in the user menu.

7-bit USASCII character format is used. Letter case UPPER/lower can both be used; response will use the upper case.

Standard operation of the serial lines requires no handshake signals.

A communication port, i.e. serial line, has two internal states (Figure 4-2):

- CLOSED Measurement data message transmitting state. In this state messages are transmitted automatically at predetermined intervals, or as a response to a polling input string, depending on the corresponding settings. User commands are not accepted, except command OPEN, which turns the line into the OPEN state. No input is echoed but ENTER inputs are responded to by character string CT:
- OPEN User dialog state. In this state the user commands are responded to. Command input is echoed. A command prompt CEILO> is displayed as an indication of readiness for command input from the user. Command line termination and command execution is by key and character ENTER = RETURN = CARRIAGE RETURN. No automatic measurement data message transmission is executed in the OPEN state. The port reverts into the CLOSED state by command CLOSE. Automatic 2-minute time-out after last character input is applied. A 2...60-minute time-out may be set by command SET PORT TIME_OUT.

NOTE

Only one of the ports can be OPEN for commands at a time. Only one of the ports transmits measurement messages at a time. Additionally, in RS-485 mode a unit ID must be given with the command OPEN.

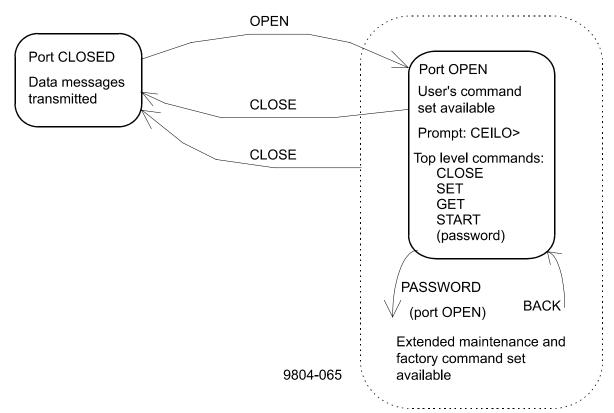


Figure 4-2 Open and closed port

4.3 User Commands

User commands, command hierarchy and description are described in table 4-1 below. User commands are accessible after opening the line by command OPEN (no password needed).

The command line interpreter provides interactive help support, so that the exact format of commands doesn't have to be remembered. At each level of the menu, keying ENTER first provides an output of the menu available, the second ENTER provides an eventual HELP text. Keying in a letter followed by ENTER outputs all commands with the same first letter; keying in two letters followed by ENTER outputs all commands all commands with the same first letter; keying in two letters, etc.; when only the one desired command is left, then it is executed when ENTERed. This way one needs to know only approximately what one wants to do, and the system provides the necessary aid.

In addition to the user's menu and command set there is a second in-depth maintenance and service level menu and command set, which is intended for more profound system changes and diagnostics. Password for this level is "advanced". Commands on this level should be used only according to instructions described in this manual.

Table 4-1 List of user and advanced level commands. Advanced level commands are marked bold.

1st (TOP) LEVEL	2nd LEVEL	3rd LEVEL	4th LEVEL	5th LEVEL	DESCRIPTION
CLOSE					Release port for message transmission, i.e. abort command dialog
BACK					Back to normal user command set
RESET	NO				Do not reset
	YES				Make full reset
SET	ALGORITHM	DEFAULTS			Set default algorithm parameter settings
	CONTROL	BLOWER	ON		Turn window conditioner blower ON
			OFF		Turn window conditioner blower OFF
		BLOWER	MANUAL		Set window conditioner blower to manual control
			AUTO		Set window conditioner blower to automatic control
		INHEATER	ON		Turn internal heater ON
			OFF		Turn internal heater OFF
		OUTHEATER	ON		Turn window conditioner heater ON
			OFF		Turn window conditioner heater OFF
	DATA_ACQ	AUTOADJ	ON		Data Acquisition parameters are software controlled
			OFF		Data Acquisition parameters are manual controlled
		СОМР	COARSE		Set internal crosstalk compensation setting coarse code value
			FINE		Set internal crosstalk compensation setting fine code value
		INTERVAL	15120		Data Acquisition: Set interval for measurement and message sending.
		TRANSMIT	POWER_OF_P		Set pulse energy input code value
	FACTORY	INLASER			Set pulse energy input code value (at start-up)
		OUTLASER			Set pulse energy target value for software adjustment
		RECVALUE			Set receiver test reference value
		WIN_CLEAN			Set clean window reference value

CT25K-U059en-2.1

1st (TOP) LEVEL	2nd LEVEL	3rd LEVEL	4th LEVEL	5th LEVEL	DESCRIPTION
() DIT			0.55		
SET MESSAGE	MESSAGE	ANGLE_COR	OFF		Angle correction: Cloud and vertical visibility heights (distances) in messages are NOT corrected for the tilt angle
			ON		Angle correction: Cloud and vertical visibility heights (distances) in
					messages ARE corrected for the tilt angle
		ANGLE_MEAS	AUTO		Automatic angle measurement for angle correction
			MANUAL	089	Manual angle value (degrees) for angle correction
		HGTH_OFFSET	-1000 1000 (ft)		Height Offset: Cloud and vertical visibility values are corrected by
			or -304 304 (m)		this offset value. Positive values add to, negative values subtract from measured height. Unit is m or ft. as set by UNITS command.
		MANUAL_MSG	"30 01000 02000		Sets test message (example)
		03000 12345678"			
				Cancels manual message	
		MODE	AUTOSEND		Measurement messages are transmitted automatically as set by command INTERVAL
			POLLING		Measurement messages are transmitted according given polling string
		PORT	DATA		Message is directed to the Data port (default), non-volatile
			MAINTENANCE		Message is directed to the Maintenance port, non-volatile
		PROFILE	SCALE	0999	Factor for scaling the range gate data items of Message No. 2.
		ТҮРЕ			Normal value: 100 (%)
			NOISE_H2	OFF	Range gates data is range normalized only if backscatter is contained
				ON	Range gates data is always range normalized, even noise
			MSG1		Message No. 1 is transmitted
			MSG2		Message No. 2 is transmitted
			MSG3		Message No. 3 is transmitted
			MSG6		Message No. 6 is transmitted
			MSG7		Message No. 7 is transmitted
			STATUS		Status message is transmitted
		UNITS	FEET		Reported heights unit is feet
			METERS		Reported heights unit is meters
		WARN_DELAY	OFF		Warning character W is set in message immediately
			ON		Warning character W is set in message after 5 minutes delay
<u> </u>		VLIM	1100		Set vertical visibility reporting limit (%) for sky condition

1st (TOP) LEVEL	2nd LEVEL	3rd LEVEL	4th LEVEL	5th LEVEL	DESCRIPTION
SET (OPER_MODE	COMP_MONIT			Run internal crosstalk compensation monitor until ESC
		CONTINUOUS			Operation Mode: Continuous measurement mode
		STANDBY			Standby mode, no measurement unless commanded by START (initiates one cycle)
	OPTION	SKY_COND	ON	CODE	Activate sky condition option
			OFF		Deactivate sky condition option
		HUMITTER	ON		Enable humitter option
	OPTION	HUMITTER	OFF		Disable humitter option
		BLOWER	ON		Enable blower related status and warning information, needs reset
			OFF		Disable blower related status and warning information
	PORT	TIMEOUT	260		Timeout for automatic CLOSE of dialog mode. Value in minutes. Default: 2 minutes
		MAINTENANCE	B300		Set maintenance port bit rate to 300 bits/s
			B2400		Set maintenance port bit rate to 2400 bits/s
			B4800		Set maintenance port bit rate to 4800 bits/s
			B9600		Set maintenance port bit rate to 9600 bits/s
		DATA	MODEM	BELL_103	300 bits/s modem mode
				V21	300 bits/s modem mode
				BELL_212A	1200 bits/s modem mode
				V22	1200 bits/s modem mode
				V42_NORMAL	1200-2400 bits/s modem mode, with error correction (V.22bis + V.42)
				V42_BIS	1200-9600 bits/s modem mode, with error correction and data compression (V.22bis + V.42bis)
				OFF	Switch modem off and use serial line communication
			INTERFACE	RS232	Use RS232 serial line
				RS422	Use RS422 4-wire serial line
				RS485 2W	Use RS485 2-wire serial line
				RS485_4W	Use RS485 4-wire serial line

1st (TOP) LEVEL	2nd LEVEL	3rd LEVEL	4th LEVEL	5th LEVEL	DESCRIPTION
SET			BAUD	B300	Set data port serial line baud rate to 300
				B1200	Set data port serial line baud rate to 1200
				B2400	Set data port serial line baud rate to 2400
				B4800	Set data port serial line baud rate to 4800
				B9600	Set data port serial line baud rate to 9600
	SW_STATUS	OK			Set report / algorithm conflict status bit ok
	UNIT_ID	0Z			Unit Identifier: Alphanumerical character for message and polling identification
GET	ALGORITHM				Print values of Algorithm parameters
	DMC_SN			Print DMC50 board serial number	
	DATA_ACQ				Print settings of Data Acquisition
	FACTORY				Print values of Factory settings
	INFO				Print identifying information for this equipment configuration
	MESSAGE			Print Message Setting	
	OPER_MODE			Print Operating Mode	
	OPTIONS			Print installed modem and active options	
	PORT				Print values of Port settings
	STATUS				Print STATUS message
	SW_STATUS				Print report / algorithm conflict status bit
	UNIT_ID				Print Unit Identification string
	VALUE	OTHERS	ANGLE		Print value of tilt angle sensor, range -15+90 degrees from vertical
			POWER_OF_P		Print measured value of laser pulse power, units: mV at A-to-D
					converter input
			RECVALUE		Print measured receiver test values
			RADIANCE		Print measured value of background radiance, units: mV at A-to-D Converter input
			WINDOW		Print measured value of Window Contamination Monitor, units: mV at A-to-D Converter input

1st (TOP) LEVEL	2nd LEVEL	3rd LEVEL	4th LEVEL	5th LEVEL	DESCRIPTION	
GET	VALUE	TEMPERATURE	BLOWER		Print value of measured blower temperature, units: °C	
GEI	VALUE	IEWIFEKAIUKE	CPU		Print value of measured CPU board temperature, units: °C	
			LASER		Print value of measured laser temperature, units: °C	
			LASER		1 /	
					Print value of measured temperature adjacent to lens, units: °C	
			OUTSIDE		Print value of measured outside temperature, units: °C	
		VOLTAGE	BCIRCUIT		Print status of battery circuit, connected / disconnected = 1/0	
			BATTERY		Print value of battery voltage, approx. +13V	
			CHARGE		Print value of battery charge voltage, approx. +13V	
			VCA		Print value of internal raw voltage, approx. +25V	
			PHV		Print value of Receiver high voltage, approx. +200V	
			PFB		Print value of Receiver switcher internal feedback voltage, appr +2V	
	VALUE	LUE VOLTAGE	P65		Print value of Transmitter high voltage, approx. +65V	
			P18		Print value of general internal supply voltage +18V	
			P13		Print value of Receiver supply voltage +13V	
			P12		Print value of general internal supply voltage +12.5V	
			P5G		Print value of general internal supply voltage +5V	
			P5R		Print value of Receiver supply voltage +5V	
			M13		Print value of Receiver supply voltage -13V	
			M12		Print value of general internal supply voltage -12.5V	
			M5R		Print value of Receiver supply voltage -5V	
			M5G		Print value of general internal supply voltage -5V	
	VERSION		•		Print identifier for Software version	
	VLIM				Print sky condition vertical visibility reporting limit (%)	
START	•				Start single-cycle measurement in operation mode STANDBY. Refer	
					to command SET OPER_MODE STANDBY.	
STOP					Stop internal compensation routine	

4.4 Data Messages

The following standard messages are provided:

Data message No. 1, 2, 3, 6 and 7.

ANet / INet communication with DMX611.

Status message S.

Each port can be set to transmit a specified message automatically. Alternatively the port can be set to transmit the set message only when polled by a predetermined polling string of characters, or the polling string can contain the message identification.

NOTE

All characters are 7-bit USASCII.

→ symbolizes Carriage Return+Line Feed (2 characters) throughout this document.

Start-of-Header, Start-of-Text, End-of-Text, Carriage Return and Line Feed are non-printing characters in most practical terminal use.

4.4.1 Data Message No. 1

This message is intended for cloud height/vertical visibility measurement when no other measurement information is desired. The message includes the most elementary status information, which enables a host system or operator to see that no warnings or alarms are present. An example of data message no.1 is presented below:

☎CTA2010©↓	1st line 11 char.
30 01230 12340 23450 FEDCBA98↓	2nd line 31 char.
\ominus	3rd line 3 char.
	total 44 characters

Transmission time and size : 0.18 s at 2400 baud (10-bit char.) 10.6 kbytes/h, 253 kbytes/d, 7.6 Mbytes/mo. at 4 msg./min., uncompressed. Interpretation of the message is as follows :

1ST LINE

Example: ☎CTA2010☺↓

where

A	Start-of-Heading character
СТ	Ceilometers' identification string; always CT
А	Unit number 09, AZ
20	Software level id 0099
1	Message number; this message is always $= 1$
0	Spare character for future subclasses of message
\odot	Start-of-Text Character

2ND LINE

Example: 30 01230 12340 23450 FEDCBA98

where

3	First digit of line: detection status as	First digit of line: detection status as follows:					
	0 No significant backscatter						
	1 One cloud base detected						
	2 Two cloud bases detected						
	3 Three cloud bases detected						
	4 Full obscuration determined by	it no cloud base detected					
	5 Some obscuration detected but	determined to be transparent					
	/ Raw data input to algorithm m	-					
0	Second digit of line: Warnings and A	Alarm information as follows:					
	0 Self-check OK						
	W At least one Warning active, no Alarms						
	A At least one Alarm active						
01230	If detection status is 1, 2 or 3:	Lowest cloud base height					
	If detection status is 4:	Vertical Visibility as calculated					
	If detection status is 0 or 5:	/////					
12340	If detection status is 2 or 3:	Second lowest cloud base height					
	If detection status is 4:	Highest signal detected					
	If detection status is 0, 1 or 5:	/////					
23450	If detection status is 3:	Highest cloud base height					
	If detection status is 0, 1, 2, 4, 5:	////					

FEDCBA98 Alarm (A), Warning (W), and internal status information. Each character is a hexadecimal representation of four bits, altogether 32 bits (b00-b31), with the following breakdown. Interpretation as follows:

F:	b31	Laser temperature shut-off (A)
	b30	Laser failure (A)
	b29	Receiver failure (A)
	b28	Voltage failure (A)
E:	b27	(spare) (A)
	b26	(spare) (A)
	b25	(spare) (A)
	b24	(spare) (A)
D:	b23	Window contaminated (W)
	b22	Battery low (W)
	b21	Laser power low (W)
	b20	Laser temperature high or low (W)
C:	b19	Internal temperature high or low (W)
	b18	Voltage high or low (W)
	b17	Relative Humidity is $> 85 \%$ (option) (W)
	b16	Receiver optical cross-talk
		compensation poor (W)
B:	b15	Blower suspect (W)
	b14	(spare) (W)
	b13	(spare) (W)
	b12	(spare) (W)
A:	b11	Blower is ON
	b10	Blower heater is ON
	b09	Internal heater is ON
	b08	Units are METERS if ON, else FEET
9:	b07	Polling mode is ON
	b06	Working from battery
	b05	Single sequence mode is ON
	b04	Manual settings are effective
8:	b03	Tilt angle is > 45 degrees
	b02	High background radiance
	b01	Manual blower control
	b00	(spare)

For example, if the battery voltage is too low, the internal heater is on and units are meters, a warning is given and the second line appears as

0W ///// ///// 00400300.

3RD LINE

⊖, ⊢ End-of-Text and CRLF

4.4.2 Data Message No. 2

Data message no. 2 contains the range and sensitivity normalized backscatter profile within a range of 0..25000 ft, which makes it suitable for e.g. graphical plotting of the atmosphere.

Data resolution is 100ft = 30 m with distance, and 16 bits (four hex-ASCII characters) with signal magnitude.

NOTE

Message no. 2 should not be used with slow baud rate and short data acquisition interval; this may lead to overflow of the transmit buffer. E.g. 300 baud rate requires 45 sec. data acquisition interval with message 2. In case the buffer is filling up, the response time to user command may extend to minutes.

An example of data message no. 2 is presented below:

☎CTA2023☺	1st line	11 char.
30 01230 12340 23450 FEDCBA98↓	2nd line	31 char.
100 N 53 +34 204 146 +2 621 LF7HN1 139↓	3rd line	44 char.
00047F2000000000000000000000000000000000		لـ0 (
01600FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	FEFEFDFDFDFDFDF	۶D
03200FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	FEFEFDFDFDFDFDF	۶D
048FDFDFDFDFDFCFCFCFCFCFCFCFCFBFBFBFBFBFBFB	FBFAFAFBFAF9FAF	79↓
064FDFDFDFDFCFCFCFCFCFCFCFBFBFBFBFBFBFBFBFAFBFAFB	FBFAFAFBFAF9FAF	ب 9
080F9FAF9F9F9F9F9F9F9F9F8F7F8F7F9F8F7F7F8F6F7F7F8F6F7	F7F6F7F6F6F6F6F6	76₊
096F9FAF9F9F9F9F9F9F9F9F8F7F8F7F9F8F7F7F8F6F7F7F7F6F6	F7F6F7F6F6F6F6F	76↓
112F5F5F5F6F5F2F4F5F6F5F5F4F4F4F4F3F4F3F4F5F3F5F4F4	F2F3F3F3F3F4F4F	₹3 ↓
128F5F5F5F6F5F2F4F5F6F5F5F4F4F4F4F3F4F3F4F5F3F5F4F4	F2F3F3F3F3F4F4F	₹3 ↓
144F2F2EFF1F4F1F2F2F1F3F2F2EFF1EFF0F0EFF1EFF0F1EFF0	F0F2F0EFF0EFEFF	÷04
160F2F2EFF1F4F1F2F2F1F3F2F2EFF1EFF0F0EFF1EFF0F1EFF0	F0F2F0EFF0EFEFF	÷04
176EEF1EFEDEFEEEFEEEEF0EDF0F2EFEDEFEFEFF0EFECECECEE	EAFOEDEDECEAEAE	EA
192EEF1EFEDEFEEEFEEEEF0EDF0F2EFEDEFEFEFF0EFECECECEE	EAFOEDEDECEAEAE	EA
208EEF1EFEDEFEEEFEEEEF0EDF0F2EFEDEFEFEFF0EFECECECEE	EAFOEDEDECEAEAE	EA
224F0ECEFEDF0ECEBEEEDEEE9EAEFF0EEECEAEDECEBEAEEE7ED	EAEAEAEBECEAEAE	EA
240F0ECEFEDF0ECEBEEEDEEE9EAEFF0EEECEAEDECEBEAEEE7ED	000000000000000000000000000000000000000	40 (
۲. B		
	419 line:	

4...19 line: 16 * 69 = 1104 char. 12th line 3 char. total 1193 char.

Transmission time and size : 5.0 s at 2400 baud (10-bit char.) 143 kbytes/h, 3.44 Mbytes/d, 103 Mbytes/mo. at 2 msg./min., uncompressed. Interpretation of the message is as follows:

1ST LINE

Identical to that of message no. 1 except that the second to last digit which identifies the message number is always 2.

2ND LINE

Identical to that of message no. 1

3RD LINE

Example: 100 N 53 +34 204 146 +2 621 LF7HN1 139-J

Measurement parameters are mostly in engineering units. Plus and minus signs are possible. Out-of-Range is indicated by slashes (/////). Contents:

100	Parameter SCALE, 100 (%) is normal (0999 possible)		
Ν	measurement mode; $N = Normal$,		
	(C = Close range, not available in CT25K)		
53	laser pulse energy, % of nominal factory setting (0999)		
+34	laser temperature degrees C (-50+99)		
204	receiver sensitivity, % of nominal factory setting (0999)		
146	window contamination, millivolts at internal ADC input (02500)		
+2	tilt angle, degrees from vertical (-15+90)		
621	background light, millivolts at internal ADC input (02500)		
LF7HN1	measurement parameters (pulse Long/Short, freq F (const.), pulse qty		
	4 ⁷⁺¹ , gain High/Low, bandwidth Narrow/Wide, sampling 10/20 MHz)		
139	SUM of detected and normalized backscatter, 0999.		
	Multiplied by scaling factor times 10 ⁴ . At scaling factor 100 the		
	SUM range 0999 corresponds to integrated backscatter		
	00.0999 srad-1		

4TH...19TH LINE

Backscatter profile, sensitivity and range normalized, at 100 ft = 30 m resolution, normally scaled to units of $(10000 \cdot \text{srad} \cdot \text{km})^{-1}$

Example of 8th line:

064FDFDFDFDFDFCFCFCFCFCFCFCFCFCFCFBFBFBFBFB			
064	is start distance (height) of line backscatter data items; decimal, unit is 100ft = 30m = 200ns (two-way)		
FDFC, FBFA,	are 16 four-character data items per line, at $100ft = 30m = 200ns$ resolution; 16-bit HEX-ASCII; msb nibble and bit first. 2's complement. Data is range and sensitivity normalized backscatter, units $(10000 \cdot srad \cdot km)^{-1}$ unless otherwise scaled by parameter SCALE		

20TH LINE

 $\otimes \downarrow$ End-of-Text and CRLF.

4.4.3 Data Message No. 3

This message contains a line which has one bit for each range gate at 100 ft resolution. It is intended for printer-type black-and-white graphical recorders such as Vaisala DR21, DR23, DD50 with printer, etc. The message is derived from Message no. 2 by setting a threshold for the range and sensitivity normalized backscatter profile and reporting signal exceeding this threshold as a 1, and otherwise as a 0. The bit line gets split into groups of four successive range gates, which are then transmitted as a string of 64 hexadecimal characters 0...F.

Message format example:

☎ CTA2033©↓	1st line	11 char.
30 01230 12340 23450 FEDCBA98↓	2nd line	31 char.
00002204FFEFFF8C000000627EEFFF31000000335A0BFFFFF	لــ10000000000 ل	
	3rd line	66 char.
\ominus	4th line	3 char.
	total 111 c	haracters

Transmission time and size :

0.46 s at 2400 baud (10-bit char.) 26.64 kbytes/h, 639 kbytes/d, 19.18 Mbytes/mo. at 4 msg./min., uncompressed.

Message interpretation:

1ST LINE

Identical to that of Message No. 1 except that the second to last digit which identifies the message number, is always 3.

2ND LINE

Identical to that of Message No. 1

3RD LINE

Example:

00002204FFEFFF8C0000000627EEFFF310000000335A0BFFFFF100000000000

64 hexadecimal characters 0...F, each bit in its binary format representing one of four subsequent range gates at 100 ft (30 m) resolution. Bit is set to "1" if its internal unscaled value (in units of (10,000 km srad)⁻¹, ref. message no. 2) exceeds 1,000 * ¹⁰⁰/_{SCALE}, i.e. maximizing the value of parameter SCALE to

999 minimizes the threshold, and thus, maximizes recording sensitivity to a backscatter value of 100 / (10,000 km srad).

4TH LINE

Identical to the 3rd line of message no. 3.

4.4.4 Data Message No. 4

Data message no. 4 is not in use.

4.4.5 Data Message No. 5

Data message no. 5 is not in use.

4.4.6 Data Message No. 6

Message number 6 is similar to message number 1 but extended with a sky condition line (section 5.4.). For interpretation, see paragraph 4.4.1.

Message number 6 format example:

<pre></pre>	lst line 2nd line 3rd line	11 char. 31 char. 30 char.
L⊗	4rd line total 75 ch	3 char. haracters
Transmission time and size .		

Transmission time and size : total 75 characters => 0.31 s at 2400 baud (10 bit char.) => 18.0 kBytes/h, 432 kBytes/d, 12.7 MBytes/mo. at 4 msg/min, uncompressed

Message interpretation :

LINES 1 and 2 are indentical to that of Message number 1.

LINE 3

Example: 3 055 5 170 0 /// 0 ///

where

3 The first number of line: detection status as follows:

0...8 Cloud amount of the first layer in oktas

- 9 Vertical visibility
- -1 Data missing or the ceilometer is in standby mode
- 99 Not enough data (after start-up)

- 055 The second number of line: Height of the 1st cloud layer (5 500 ft or 550 m depending on feet or meter selection)
- 5 The third number of line: Cloud amount of the 2nd layer in oktas
- 170 The fourth number of line: Height of the 2nd cloud layer (17 000 ft or 1 700 m depending on feet or meter selection)
- 0 The fifth number of line: Cloud amount of the 3rd layer in oktas
- /// The sixth number of line: Height of the 3rd cloud layer
- 0 The seventh number of line: Cloud amount of the 4th layer in oktas
- /// The eighth number of line: Height of the 4th cloud layer

The reporting resolution is 100 ft or 10 m depending on feet or meter selection. If the cloud amount is zero the corresponding layer height is "///".

4.4.7 Data Message No. 7

Message number 7 is similar to message number 2 but extended with a sky condition (section 5.4) line. The sky condition line is identical to that of message number 6. For interpretation, see paragraphs 4.4.2 and 4.4.6. Below is an example of message number 7.

```
CTA2070☺↓
50 ///// ///// 00000200J
100 N 101 +19 90 200 +6
       21 LF7HN1
         27J
08000010000FFFF0002FFFEFFFEFFFFFD000000020001FFFEFFFD0000000001
112000000000000001FFFCFFF00000002FFFE0000000FFFFFFFF00010000FFFE
160FFFE0000FFFE0015004300B200B300E300540022000C0030FFFF00000000001
1 028 5 135 0 /// 0 /// 
L®
```

Transmission size and time for Msg7 is :

total 1223 characters

=> 5.1 s at 2400 baud (10 bit char.)

=> 147 kBytes/h, 3.52 MBytes/d, 106 MBytes/mo. at 2 msg/min, uncompressed

NOTE

"Not enough data", i.e. detection status 99, is reported after a start-up until the unit has operated for 25 minutes. "Data missing", i.e. detection status -1, is reported if more than 25% of gathered data is considered invalid due to a hardware failure.

4.4.8 (Spare)

4.4.9 (Spare)

4.4.10 DMX611 operation (option)

The DMX611 serves as an interface between CT25K buss structure and Vaisala proprietary ANet and INet busses.

The DMX611 converts CT25K data into binary format. After receiving a poll request, the DMX611 sends an answer packet containing the requested CT25K data. While both the poll and answer messages are in hexadecimal binary format, the user interface is offered by the Testset. The Testset may be a hand held device or a software application. Refer to AWOS 2000 Maintenance manual for operational instructions.

4.4.11 Status Message "S"

The Status Message displays internal monitoring of the whole unit including prevailing parameter values for voltages, receiver and transmitter, temperatures, environmental factors, and internal heating. The message is meant mainly for testing and maintenance purposes. The Status Message is displayed by the command GET STATUS.

An example of the status message is presented below:

```
CTA38S0©↓
0₩ ///// ///// 00400200↓
VOLTAGES (UNIT 0.1V)↓
P12 125 M12 -126 P5G 54 M5G -54 VCA 225↓
P13 128 M13 -124 P5R 50 M5R -50 BAT*098↓
P18 178 PHV 2306 PFB 17 P65 674 CHA 144↓
┛
RECEIVER TRANSMITTER↓
            PLEN L
GAIN H
GAIN HPIEN LABAND NPQTY 64KJSAMP 10MHzOUT 1416mVJSENS OKSENS 101%J
COMP 013 125 IN 190↓
1
TEMPERATURES ENVIRONMENT↓
BLOWER +20C WINDOW 210mV 102%↓
CPU +34C RADIANCE +60mV↓
LASER +29C ANGLE +3DEG
                                (M)↓
LENS +34C HUMIDITY NONE
OUTSIDE +23C↓
INHEATER ON OUTHEATER OFF BLOWER OFF↓
L
```

NOTE

An asterisk (*) in front of a variable indicates that an alarm or warning limit of that variable is exceeded. In the example above the battery voltage is too low.

(M) is shown after the ANGLE value only if the manual angle setting is used.

Interpretation of the status message is as follows:

1ST LINE

Identical to that of message no. 1 except that the second to last character which identifies the message number, is always S.

2ND LINE

Identical to that of message no. 1

LINES 3...6

Measured internal voltages in units of 0.1V, as follows:

ВАТ СНА	Battery voltage, e.g. Battery charge voltage, e.g.	098 144
VCA	Internal raw voltage, e.g.	225
	5.5	
PHV	Receiver high voltage, e.g.	2306
PFB	Rec. switcher feedback voltage, e.g.	17
P65	Transmitter high voltage, e.g.	674
P18	General internal supply voltage, e.g.	178
P13	Receiver supply voltage, e.g.	128
P12	General internal supply voltage, e.g.	125
P5G	General internal supply voltage, e.g.	54
P5R	Receiver supply voltage, e.g.	50
M13	Receiver supply voltage, e.g.	-124
M12	General internal supply voltage, e.g.	-126
M5R	Receiver supply voltage, e.g.	-50
M5G	General internal supply voltage, e.g.	-54

LINES 8...13

Prevailing Receiver and Transmitter settings and variables as follows:

RECEIVER	GAIN BAND	H or L N or W	Gain is High or Low Bandwidth is Narrow or Wide
	SAMP SENS	10MHz OK	Sampling rate is 10 MHz Receiver sensitivity OK compared to factory setting
	СОМР	13 125	Internal crosstalk compensation setting codes, coarse (013) and fine (125)
TRANSMITTER	PLEN	L or S	Pulse length is Long or Short
	PQTY OUT	64K 1416mV	Pulse quantity is 64x1024 Laser pulse energy measured by Optics Monitor is 1416 mV at Monitoring A-to-D Converter input.
	SENS	101%	Measured pulse energy is 101 % of nominal value
	IN	190	Pulse energy control input code is 190

LINES 15...20

Temperature and environment variables as follows:

TEMPERATURE	BLOWER	+20C	Temperatue measured at the Window Conditioner blower
	CPU	+34C	airfow exit, e.g. +20 deg C Temperature on the microprocessor (CPU) Board,
	LASER	+29C	e.g. +34 deg C Temperature measured at the laser diode, e.g. +29 deg C
	LENS	+34C	Temperature measured adjacent to the lens, e.g. +34 deg C
	OUTSIDE	+23C	Temperature measured by the external sensor (at connectors), e.g. +23 deg C
ENVIRONMENT	WINDOW	210mV 102%	Value of window contamination measurement, e.g. 210 mV, and ratio in per cent compared to factory setting, e.g. 102 %
	RADIANCE	+60mV	Value of background radiance measurement, e.g. 60 mV
	ANGLE	+3DEG	Value of tilt angle relative to vertical, e.g. +3 degrees. Positive value means that door of the unit tilts towards ground.
	HUMIDITY	NONE	(Relative Humidity in per cent inside the ceilometer if sensor is furnished)

LINE 21

Status of Internal Heater (INHEATER ON/OFF), Window Conditioner Heater (OUTHEATER ON/OFF), Window Conditioner Blower (BLOWER ON/OFF).

LINE 22

⊖, ⊢ End-of-Text and CRLF

4.4.12 Manual Message

The ceilometer can be set to transmit user defined cloud heights and status information. The user can set a cloud message in the format of line 2 of any real cloud message (e.g. Msg 1). The message must be between quotation marks, see example. This message is volatile. The manual message command is behind the password "advanced". Below is an example of a manual message:

```
CEILO>ADVANCED
```

PASSWORD ACCEPTED ! CEILO>set message manual_msg "30 00200 01000 05000 00000000" MANUAL MESSAGE: 30 00200 01000 05000 00000000

If the given message does not have the correct format, it is not accepted and an error message will follow. To return to the normal measurement mode, give an empty string :

CEILO>SET MESSAGE MANUAL_MSG "" MANUAL MESSAGE NOT ACCEPTED USE FORMAT: "30 00100 02000 15000 00000000" MESSAGE MODE IS NORMAL MEASUREMENT MODE

The manual message is intended for testing purposes. After reset the normal cloud detection mode takes effect.

4.5 Polling mode

A port can be set to transmit a message only when polled by a predetermined polling string of characters. The polling string can contain the message identification.

The CT25K unit can be assigned an identification of one character digit or letter. The factory setting is 0 (zero). The polling mode is activated with the command:

CEILO>SET MESSAGE MODE POLLING

and return to normal autosend mode is done with command

CEILO>SET MESSAGE MODE AUTOSEND.

The polling string format is

<Enq> CT id no J

where

Enq	is character ENQUIRE = ASCII 05H = control-E
CT	is fixed ceilometer identifier
id	is identification character, 7-bit printable ASCII character.
No	is optional message identifier 1, 2, 3, 6, 7, S
₊	ENTER (Carriage Return) + Line Feed

Polling command examples :

< Enq > CT11 <enter></enter>	Message 1 from ceilometer nr.1
< Enq > CT12 <enter></enter>	Message 2 from ceilometer nr.1
< Enq > CT1S <enter></enter>	Status message from ceilometer nr.1

NOTE

If the *id* character in a polling string is replaced with a blank space, all ceilometers on the line will respond. Accordingly, if *No* is a blank space, CT25K sends the default message.

4.6 Prevailing parameter settings

The prevailing control and parameter settings that chiefly determine operation can be seen by the following GET commands. Shown parameter values are equal to standard factory settings but may vary depending on installation in question. Operator input is marked in CAPITAL (Times) letters after the command prompt CEILO> and the Ceilometer response under the operator input as COURIER font.

In case you want to change parameter values see paragraph 3.4 for settings of user programmable parameters.

```
\texttt{CEILO} \texttt{>} \textbf{GET} \textbf{ ALGORITHM}
```

NOISE SCALE: 1.7 MINIMUM SUM: 30 MINIMUM EXTCO: 6.0

```
CEILO>GET DATA_AQC
```

```
AUTOADJUSTMENTS: ON
DATA-ACQ. INTERVAL: 15 SEC.
RECEIVER
GAIN: H *
BANDWIDTH: N
SAMPLING RATE: 10 MHz
TRANSMITTER
LENGTH OF PULSE: L *
POWER OF PULSE: 188 *
QUANTITY OF PULSES: 64K
COMPENSATION
COARSE COMPENSATION: 12 *
FINE COMPENSATION: 109 *
```

CEILO>GET FACTORY

FACTORY	
BEAMSPLITTER: 96%	* *
IN LASER: 185	* *
OUT LASER: 1200	* *
COARSE COMP.: 13	* *
FINE COMP.: 125	* *
RECEIVER TEST VALUE: 350	* *
CLEAN WINDOW: 200mV	* *

CEILO>GET MESSAGE

MESSAGE ANGLE CORRECTION: ON HEIGHT OFFSET: 0 NOISE H2 COMPENSATION: OFF PROFILE SCALE: 100% PORT: DATA TYPE: MSG1 UNITS: FEET MODE: AUTOSEND

CEILO>GET OPER_MODE

OPERATION MODE: CONTINUOUS

CEILO>GET PORT

MAINTENANCE PORT BAUDS: 2400, E71 DATA PORT BAUDS: 300, E71 MODEM: CCITT (300) MODEM STATUS: ON YOU ARE USING: MAINTENANCE PORT

CEILO>GET UNIT_ID

UNIT ID: 0

NOTE

* Individual values are automatically adjusted by the software.

** Individual original factory settings or updated original settings in conjunction with subassembly replacement.

4.7 Manual angle setting

The automatic tilt angle measurement can be disabled and replaced with a manual value. To set the manual angle value type :

CEILO>ADVANCED

PASSWORD ACCEPTED !

 $\texttt{CEILO}\texttt{SET} \ \textbf{MESSAGE} \ \textbf{ANGLE_MEAS} \ \textbf{MANUAL} \ \textbf{5}$

MANUAL ANGLE: 5

To check the current state of tilt angle setting, get the status message :

CEILO>GET STATUS

VOLTAGES (UNIT 0.1V) P12 130 M12 -122 P5G 53 M5G -54 VCA 220 P13 126 M13 -121 P5R 49 M5R -48 BAT 121 P18 176 PHV 2755 PFB 20 P65 769 CHA 121 TRANSMITTER RECEIVER GAIN H PLEN L PQTY 64K BAND N SAMP 10MHz OUT 1270mV SENS OK SENS 100% COMP 013 125 IN 190 TEMPERATURES ENVIRONMENT BLOWER +20C WINDOW 200mV 100% +32C RADIANCE CPU 60mV LASER +28C ANGLE +5DEG (M) +32C HUMIDITY NONE LENS OUTSIDE +20C INHEATER OFF OUTHEATER OFF BLOWER OFF

(M) after the angle value indicates the use of a manual value.

5. FUNCTIONAL DESCRIPTION

5.1 Theory of Operation

Basic Principle of Operation

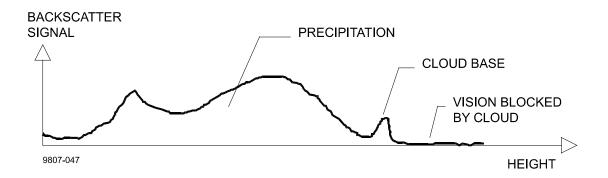
The operating principle of the CT25K Ceilometer is based on measurement of the time needed for a short pulse of light to traverse the atmosphere from the Transmitter of the Ceilometer to a backscattering cloud base and back to the Receiver of the Ceilometer.

With the speed of light being:

 $c = 2.99 \text{ x } 10^8 \text{ m/s}$ (= 186 000 miles per second)

A reflection from 25,000 ft will be seen by the receiver after

 $t = 50.9 \ \mu s$


The general expression connecting time delay (t) and backscattering height (h) is

h = ct/2

where c is the speed of light.

Practical Measurement Signal

Generally, particles at all heights backscatter light, and so the actual return signal may look like that shown in Figure 5-1.

Figure 5-1 Typical Measurement Signal

The instantaneous magnitude of the return signal will provide information on the backscatter properties of the atmosphere at a certain height. From the return signal, information about fog and precipitation, as well as cloud, can be derived. Since fog and precipitation attenuate the light pulse, the cloud base signal will appear lower in magnitude in the return echo. However, the fog and precipitation information also provides data for estimating this attenuation and computing the necessary compensation, up to a limit. In its normal full-range operation the CT25K ceilometer digitally samples the return signal every 100 ns from 0 to 50 μ s, providing a spatial resolution of 50 feet from ground to 25,000 feet distance. This resolution is adequate for measuring the atmosphere, since visibility in the densest clouds is in the order of 50 feet.

Noise Cancellation

For safety and economic reasons, the laser power used is so low that the noise of the ambient light exceeds the backscattered signal. To overcome this, a large number of laser pulses are used, and the return signals are summed. The desired signal will be multiplied by the number of pulses, whereas the noise, being random, will partially cancel itself. The degree of cancellation for white (Gaussian) noise equals the square root of the number of samples; thus, the resulting signal-to-noise ratio improvement will be equal to the square root of the number of samples. However, this processing gain cannot be extended ad infinitum since the environment changes. For example, clouds move.

Return Signal Strength

The instantaneous return signal strength is in general form (the Lidar equation):

$$P_{r}(z) = Eo \cdot \frac{c}{2} \cdot \frac{A}{z^{2}} \cdot \beta(z) \cdot e^{-2\int_{0}^{z} \sigma(z')dz}$$

where

- $P_r(z)$ is the instantaneous power received from distance z [W = Watt].
- E_o is the effective pulse energy (taking all optics attenuation into account) [J = Joule = Ws = Watt second].
- c is the speed of light [m/s = meters per second].
- A is the receiver aperture $[m^2]$.
- z is the distance in question [m].
- $\beta(z)$ is the volume backscatter coefficient at distance z [m⁻¹srad⁻¹, srad = steradian].

$$e^{-2\int_{0}^{z}\sigma(z')dz'}$$

is the two-way atmospheric transmittance and accounts for the attenuation of transmitted and backscattered power by extinction at various distances (z') between transceiver and distance in question (z). The expression equals 1 in a clear atmosphere (i.e., no attenuation).

Height Normalization

Assuming a clear atmosphere, it can be seen that the power is inversely proportional to the square of the distance or height i.e., the strength of a signal from 10,000 ft is generally one-hundredth of that from 1,000 ft.

The height-square dependence is eliminated by multiplying the value measured with the square of the height (height normalization). However, noise, being height-independent from a measurement point of view, will then be correspondingly accentuated with increasing height.

The Backscatter Coefficient

The volume backscatter coefficient, $\beta(z)$, of the Lidar Equation represents the portion of light which is reflected back towards the Ceilometer from a distance z (e.g., by water droplets). It is obvious that the denser a cloud is, the stronger the reflection will be. The relationship can be expressed as:

 $\beta(z) = k \cdot \sigma(z)$

where

- k is a "constant" of proportionality.
- $\sigma(z)$ is the extinction coefficient (i.e., the attenuation factor in a forward direction).

The extinction coefficient relates to *visibility* in a straightforward manner. If visibility is defined according to a 5 % contrast threshold (World Meteorological Organization definition for Meteorological Optical Range MOR, equals daylight *horizontal* visibility), then

$$\sigma = 3 / V$$

where

σ is the extinction coefficient
 V is MOR visibility (5 % contrast)

The "constant" of proportionality, k, also called the Lidar Ratio, has been subjected to a lot of research. Although the Lidar Equation can be solved without knowing its value, it must remain constant with height if accurate estimates of the extinction (or visibility) profile are to be made.

It has been found that in many cases, k can be assumed to equal 0.03, tending to be lower in high humidities, to 0.02; and higher in low humidities, to 0.05. However, in e.g. precipitation of various kinds, k will have a wider range of values.

Assuming a value 0.03 (srad⁻¹) for k and visibility in clouds being in the range 15...150 m (50...500 ft) gives the range of value for β :

 $\beta = 0.0006...0.006 \text{ m}^{-1} \text{srad}^{-1} = 0.6...6 \text{ km}^{-1} \text{srad}^{-1}$

Extinction Normalization and Vertical Visibility

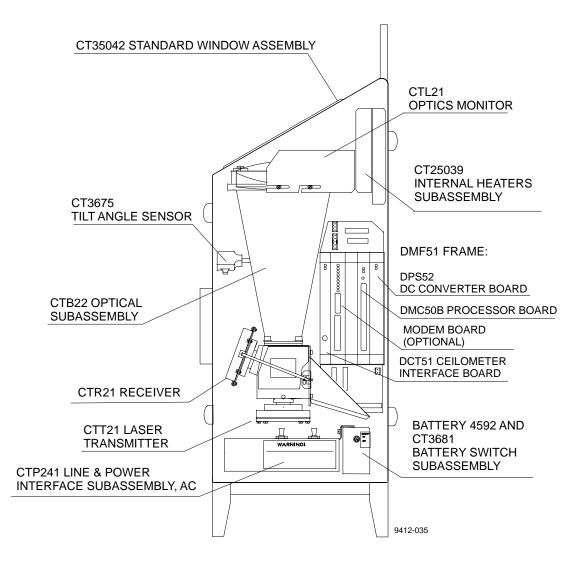
Any fog, precipitation, or similar obstruction to vision between ground and cloud base may attenuate the cloud base signal and produce backscatter peaks that far exceed that from the cloud. Virtually any backscatter height profile is possible, up to some physical limits. To distinguish a significant cloud return signal, the attenuation of fog, precipitation, etc., has to be taken into account by normalizing with regard to extinction. The profile thus obtained is proportional to the extinction coefficient at various heights, and enables the use of fairly straightforward threshold criteria to determine what is cloud and what is not.

By assuming a linear relationship between backscatter and extinction coefficient according to the previous formula and that the ratio, k, is constant over the range observed, it is possible to obtain an extinction coefficient profile through a mathematical computation. This is also called *inverting* the backscatter profile to obtain the extinction coefficient profile, and answers the question, "What kind of extinction coefficient profile would produce the backscatter profile measured?".

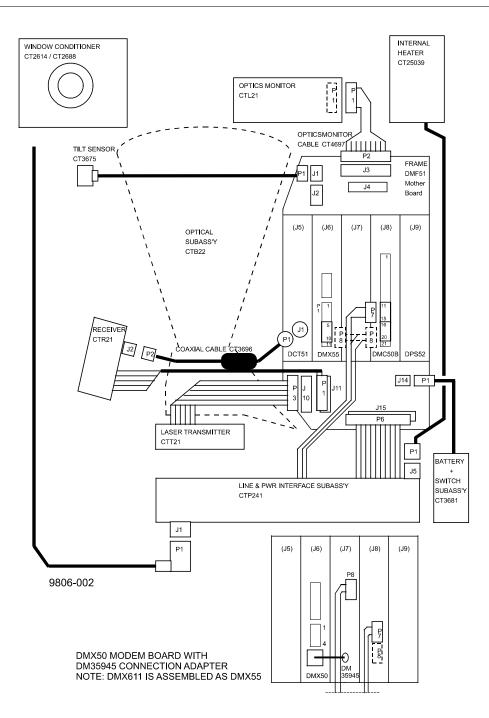
No assumption as to the absolute value of the ratio, k, needs to be made if k is constant with height. The assumptions that have to be made are fairly truthful, and in any case accurate enough for the purpose of cloud detection.

Likewise, the inversion is also independent of several instrumental uncertainties including transmitted power and receiver sensitivity.

An estimate of *Vertical Visibility* can easily be calculated from the extinction coefficient profile because of the straightforward extinction coefficient-to-visibility relationship, provided that a constant contrast threshold is assumed. Visibility will simply be that height where the integral of the extinction coefficient profile, starting from ground, equals the natural logarithm of the contrast threshold, sign disregarded.


Tests and research have, however, shown that the 5 % contrast threshold widely used for horizontal measurement is unsuitable for vertical measurement if values close to those estimated by a ground-based observer are to be obtained.

The CT25K uses a contrast threshold value which, through many tests, has been found to give Vertical Visibility values closest to those reported by ground-based human observers. A wide safety margin is obtained with regard to pilots looking down in the same conditions since the contrast objects, especially runway lights, are much more distinct on the ground.


5.2 Technical Description

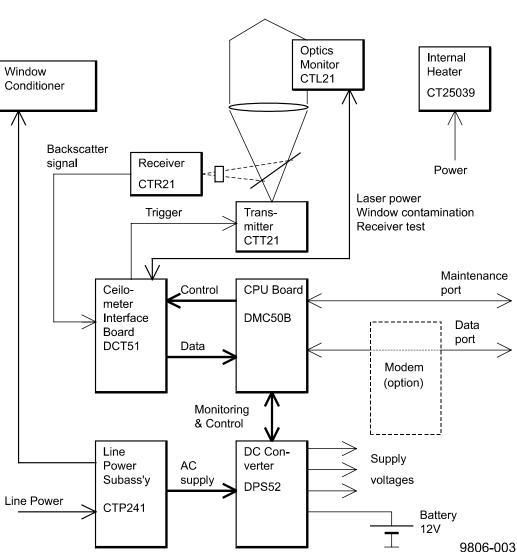
5.2.1 General

Figure 5-2 below shows the internal layout of the Measurement Unit and the following figure 5-3 the subassembly interconnections. Summary of part numbers and subassemblies is listed in Table 5-1. The technical description is split into subparagraphs according to Unit Block Diagram illustrated in Fig. 5-4. For more detailed block diagrams and descriptions, see corresponding sub-paragraphs.

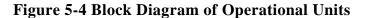
Figure 5-2 Measurement Unit Components

Figure 5-3 Subassembly Interconnections

Table 5-1 Parts List


PART NO.	DESCRIPTION	NOTES
CT15035	ENCLOSURE	
CT35042	STANDARD WINDOW	
CT35043	TROPICS WINDOW	Specified at order
CTP241	LINE & PWR INTERFACE	-
	SUBASSEMBLY, AC	
4592	BATTERY	

CT25039	INTERNAL HEATERS	
CT2675	SUBASSEMBLY	
CT3675 CTB22	TILT ANGLE SENSOR OPTICAL SUBASSEMBLY	
CTT21	LASER TRANSMITTER	
CTR21	RECEIVER	
CTL21	OPTICS MONITOR	
CT25015	COMPENSATION FIBER	
DMF51	BOARD FRAME	
DMC50B	PROCESSOR BOARD	
DPS52	DC CONVERTER BOARD	
DCT51	CEILOMETER INTERFACE BOARD	
DMX55	MODEM BOARD	Specified at order
DMX50	MODEM BOARD	Specified at order
DM35945	DMX50 CONNECTION ADAPTER	~
DMX611	ANET BUS INTERFACE	Specified at order
CT3681	BATTERY SWITCH SUBASSEMBLY	
CT3696	COAXIAL CABLE	
CT4697	OPTICS MONITOR CABLE	
CT1679	SHIELD	
CT2614	BLOWER 230 VAC	Specified at order
CT2688	BLOWER 115 VAC	Specified at order
CT25106	PEDESTAL, metal	Specified at order
CT2665	PEDESTAL, fiberglass	Specified at order
CT3839	POWER LINE CABLE	
CT3838	DATA CABLE	
CT3709	POWER TERMINATION BOX	Specified at order
CT3707	SIGNAL TERMINATION BOX	Specified at order
PSION3	MAINTENANCE TERMINAL	Specified at order
CT3840	TERMINAL CABLE	Specified at order
CT35198	PC TERMINAL CABLE	Specified at order
17430	DOOR KEY SOUTHCO E3-3	
CT45155	ALLEN KEY 6mm	
CT25KWBK	WEDGE BOLT KIT	
CT25184	OPTICAL TERMINATION HOOD	Specified at order
CT35022	SHOCK ABSORBER	Specified at order


5.2.2 LIDAR Measurement

Refer to Block Diagram in Figure 5-4. Top level control resides in the software of Processor Board DMC50B. This determines what settings are to be used for the measurement. The settings are written by the software into Ceilometer Interface Board DCT51, which then carries out the actual measurement autonomously. When the measurement is complete, an interrupt is issued from the DCT51 to the DMC50B, upon which the accumulated measurement backscatter raw data profile is fetched by the DMC50B into its RAM for the algorithmic processing.

Normal (full range) mode characteristics: Laser pulse 100 ns Energy 1.6 μ J Repetition rate 5.57 kHz Number of pulses 65,536 Measurement time 11.7 s Receiver on High Gain Bandwidth 3 MHz Sampling at 100 ns 500 useful samples per laser pulse, Measurement range 0...25,000 ft. (0...7.5 km)

ATMOSPHERE

In addition, there is another mode for carrying out a simulated measurement without laser, with the Light Emitting Diode (LED) of the Optics Monitor CTL21 acting as the simulated backscatter. This mode serves for testing the whole receiver section.

When the measurement starts, the Timing and Control logic of the DCT51 starts issuing trigger pulses to the Laser Transmitter CTT21 at the specified repetition rate. At each trigger pulse the transmitter sends out one laser pulse. This laser pulse gets collimated by the lens into a near-parallel beam of light. As this short laser beam traverses the atmosphere, particles cause scatter in the backward direction, a part of which hits the lens and gets focussed by it. The beamsplitter reflects a fixed fraction of it through the Infrared Interference Filter onto the Avalanche Photodiode (APD) of the Receiver CTR21. The Infrared Interference Filter eliminates all background light noise outside the laser wavelength band.

The APD transforms the backscatter photons into electrical current at a fixed ratio. This current gets amplified in the transimpedance-type Receiver Amplifier to a voltage, which is fed into the Flash Analog-to-Digital Converter (ADC) of the Ceilometer Interface Board DCT51. This ADC converts the analog voltage to 8-bit digital bytes at the specified sampling rate. These digital samples then get added into the First-In-First-Out (FIFO) register of the DCT51. This FIFO is cleared to all-zeroes before start; its data content is rotated so that a sample from a specific distance (specific delay time after the laser pulse launch) always gets summed into the same rotating and accumulating register location. Thus the sequential summing of new samples gradually creates a high-resolution digital image of the backscatter profile. Noise, being random, increases only in proportion to the square root of the number of samples, whilst the effective signal increases in direct proportion to the number of samples. Thus, the final digital profile will reveal properties of the atmosphere that couldn't be seen from an instantaneous signal.

At the end of the set number of pulses the DCT51 issues an interrupt to the DMC50B, upon which the software fetches the digital profile to its RAM for the algorithmic processing. After processing, the measurement result is ready for message transmission through the data link to the equipment it connects to.

In conjunction with the backscatter measurement the laser pulse energy is also measured by the Optics Monitor CTL21 photodiodes. The measured value is used by the algorithm for normalizing the profile into the right magnitude, for adjusting the laser voltage by the Digital-to-Analog Converter (DAC) placed on the DCT51, and ultimately, for warning or alarming of loss of laser power.

During the exit of the laser pulse, a small fraction of energy is also reflected back into the receiver by the optics surfaces of the unit. Due to the tremendous sensitivity of the receiver, this optical cross-talk could seriously distort the profile, and therefore it needs to be neutralized. This is done by a secondary APD, which gets its input from an optical fiber light guide placed so that it only sees the outgoing laser pulse but not the backscatter. The two APD's are connected in a half-bridge configuration, whereby most of the optics cross-talk signal is substracted from the measurement signal. For best possible balancing of the bridge, the compensating APD gain is under software control through the DAC of the DCT51. The backscatter measurement sampling actually starts before the launch of the laser pulse, and thus the resulting distortion is visible to the software in the raw measurement profile, and this is iteratively kept within limits.

5.2.3 Internal Monitoring and Control

All essential subassembly functions are monitored continuously to ensure measurement accuracy and reliability. Temperature, laser performance etc. is measured by sensors and transferred to Processor Board DMC50B, converted from analog to digital by its Monitor A-to-D Converter and further analyzed by the processor software.

Warning and Alarm limits are defined in software through parameter settings. In case a malfunction has been detected, i.e. the limits have been exceeded, the software sends warning and alarm messages which can be seen by the STATUS message (Paragraph 4.4.11)

5.3 Module Descriptions

5.3.1 Optical Subassembly CTB22

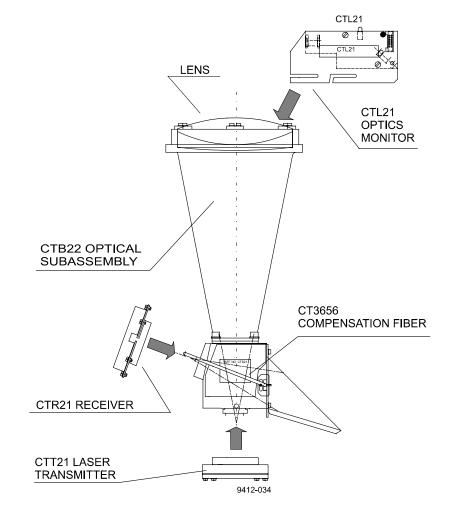



Figure 5-5 Optical Subassembly CTB22 with Optics Monitor, Transmitter and Receiver Subassemblies

Description

The optical subassembly consists of the following major units: the conical optical tube with fixture for the lens, a precise beam integrator block at the lower end including a beamsplitter and a narrow-band filter, and a connection flange for the laser transmitter and receiver subassemblies.

The receiver and transmitter subassemblies are factory-aligned and focused to the optimum. They can be replaced any time by new assemblies without need for readjustment. The adjustment necessary for the compensation of the optical crosstalk after replacement of the receiver or transmitter subassembly can be made by means of a graphical presentation on a maintenance terminal.

At the upper end of the optical tube is the Optics Monitor for control of the laser performance, window contamination and temperature.

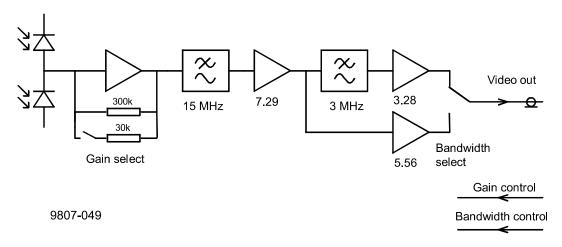
5.3.2 Laser Transmitter CTT21

Figure 5-6 CTT21 Block Diagram

Description

An unregulated supply voltage P65 is brought to the Laser Transmitter CTT21 and adjusted to a suitable level by means of an internal voltage regulator. The laser diode of the subassembly is supplied with this regulated high voltage. A trigger pulse is routed through a transformer to the trigger electrode of the switching thyristor for driving a current pulse through the laser diode. A special pulse-forming network makes this current pulse near-rectangular. A

small control circuit with a temperature sensor and a heating element ensures the correct laser temperature. The laser temperature is also routed to the Ceilometer Interface Board DCT51 and Processor Board DMC50B for internal monitoring.


WARNING

Dangerous voltages are present in this instrument. Use extreme caution when handling, testing, and adjusting.

Laser safety

To guarantee the eye safety of the laser equipment, the cable connecting the subassembly is short, permitting operation only when the installation is complete. For removing the laser transmitter subassembly, the cable between the transmitter and the laser interface board must be disconnected first.

5.3.3 Receiver CTR21

Figure 5-7 CTR21 Block Diagram

The Receiver subassembly CTR21 consists of two identical avalanche photo diodes (APDs). The second APD compensates most of the optical cross-talk appearing in the lens system through signal reflection by means of a half-bridge connection. The first APD receives the actual measuring signal and sends the pulse current through a transimpedance amplifier with selectable gain. At the output of this amplifier the signal is a voltage signal transferred further through a filter with a frequency limit of 15 MHz to a second signal amplifier. According to the operating mode the signal goes further to a new amplifier stage or to a combined additional filter with a frequency limit of 3 MHz and an amplifier.

The amplifier gain is selected by the system automatically so that the smallest noise signal appearing in the measurement signal is bigger than the resolution of the flash AD converter of the Ceilometer Interface Board DCT51. The biggest measurement signal must not exceed the full measurement range of

the flash AD converter. The gain control as well as the bandwidth selection are automatic and controlled by the processor software and the DCT51.

WARNING

Dangerous voltages are present in this instrument. Use extreme caution when handling, testing, and adjusting.

5.3.4 Optics Monitor CTL21

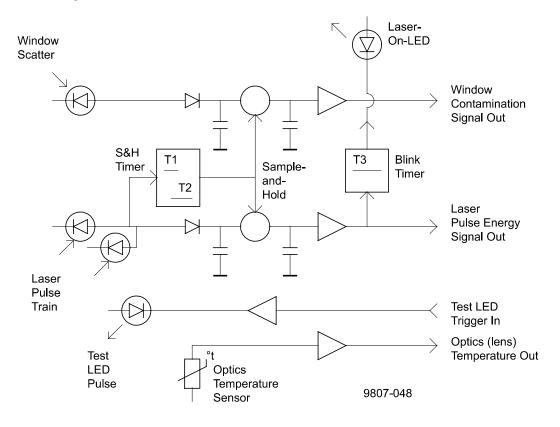
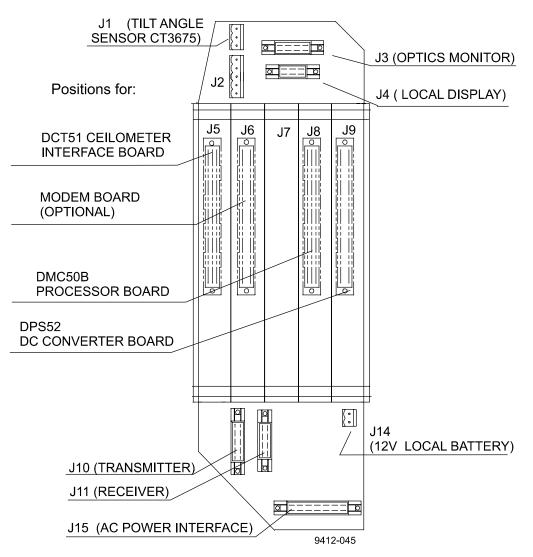


Figure 5-8 CTL21 Block Diagram


The laser pulse train sent from the laser transmitter CTT21 is monitored by two PIN photodiodes. After a corresponding amplification and AD conversion on the processor board, the signal is used as a control signal for the laser output power. The pulses also give a start signal for a sample & hold circuit, which, through a further photodiode, measures the light reflected back from the window due to contamination. This signal is also transferred further to the processor board A-to-D Converter and software, to give an indication of window contamination. A Blink Timer controls an LED indicator which indicates when the laser is switched on, i.e. sends laser pulses.

For testing of the complete receiver subsystem a short pulse is sent from a test LED in the direction of the receiver. The control signal for triggering the test LED is given from the ceilometer interface board DTC51. The optics is heated in order to protect it against condensed humidity. A temperature sensor

delivers a control signal for the heating via an amplifier, processor board A-to-D Converter, and software.

5.3.5 Board Frame DMF51

The frame DMF51 is a subassembly into which the Processor Board DMC50B, Ceilometer Interface Board DCT51, DC Converter DPS52 and the optional modem are plugged. Its mechanical construction suits well for housing printed circuit boards. Being fully metallic, it protects the electronics against electromagnetic disturbances (Figure 5-9).

DMF51 FRAME

Figure 5-9 DMF51 Frame

The printed circuit boards are of size 100 x 144 mm. Each board is provided with a front panel that is securely fastened with two screws to the frame, simultaneously providing a good electrical ground connection.

The connections between the separate plug-in boards are realized by means of a motherboard and multiple board connectors.

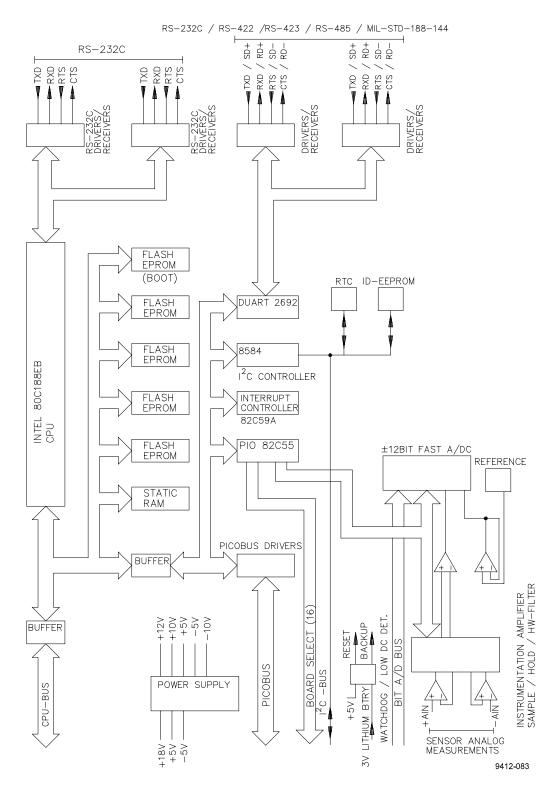


Figure 5-10 DMC50B Block Diagram

The DMC50B Processor Board is the central processing unit of the CT25K. It performs the following functions:

- A-to-D conversion of signals from various internal sensors
- Data processing under a powerful real-time operating system
- Serial communication with external devices
- Internal subassembly control
- Built-in tests of the whole system

Processor

The DMC50B has a fully static 16-bit CMOS processor type 80C188EB. This processor is especially designed for very low power applications and it can be switched by software to its low power idle mode between tasks.

FLASH EEPROM memory is used as storage for the real-time operating system and application specific code files. The SRAM memory stores the variables and serves as an intermediate database.

A Watchdog timer is employed to assure a complete system reset in the event of system malfunction.

A-to-D Converter

Analog data is digitized by a fast \pm 12 bit A-to-D Converter located on the DMC50B Board. The converted data is analyzed by the processor and used for various purposes, e.g. internal monitoring.

Serial Communication Ports

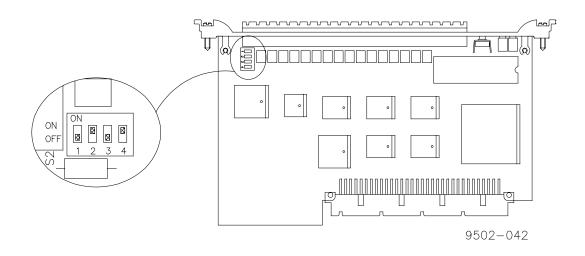
A UART (Universal Asynchronous Receiver-Transmitter) controls the serial communication of the system. The CT25K provides two serial communication ports, "MAINTENANCE" (external connector J4, Line/Port A at Processor Board) and "DATA" (external connector J3, Line/Port B at Processor Board). Port B is intended to be used for measurement data communication and Port A for on-site maintenance. When desired, port settings can be changed by corresponding software commands (paragraphs 3.4 and 4.3 for more information). The communication to the DC Converter DPS52 is carried out by I²C Bus, and to the Interface Board DCT51 by I²C Bus and by address and data busses.

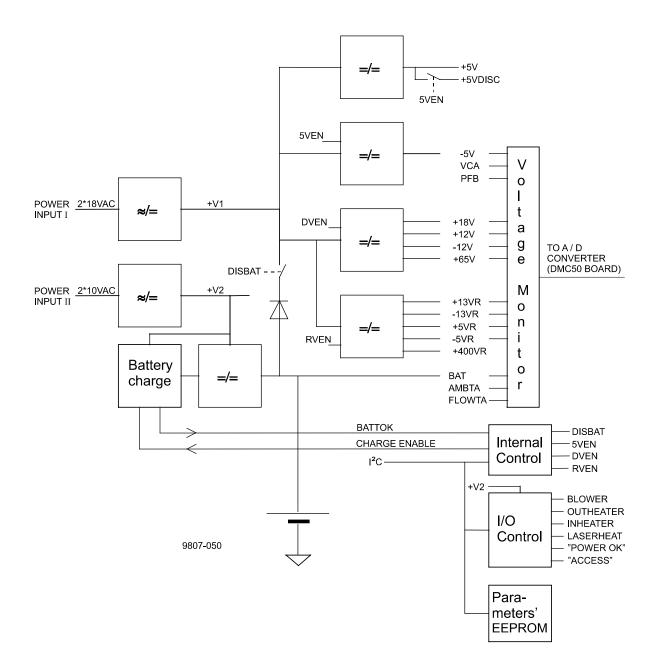
The DMC50B Processor Board is built using surface mount technology on both sides, and has no jumpers or IC sockets. The DMC50B is conformal coated for harsh conditions; its temperature range extends from -50 °C to +70 °C.

The DMC50B external communication connectors are located on the front edge of the processor board. The cables can be disconnected for maintenance.

Technical Information	
Processor Clock Speed	16-Bit 80C188EB, Intel 24 MHz (12 MHz Bus)
Memory	
FLASH EEPROM STATIC RAM	640 kB 256 kB 1 MB continuous memory addressing
A-to-D Converter	± 12 Bit
Accuracy	0.05 % of FSR
Speed	200 µs / Conversion
Gain control	automatic and programmable
Full scale ranges	$\pm 2.5 \text{ V}, \pm 250 \text{ mV}, \pm 25 \text{ mV},$
	± 7.5 mV
Filtering	by Hardware, Software or both
Serial Communication Ports	
Multistandard Ports	2 configurable ports to comply with: RS-232D, RS-422, RS-423, and RS- 485 or MIL-STD-188-114 standards
Data Transfer Rate	110 to 19,200 baud 300 to 9600 baud used in CT25K Programmable rate, frame, handshake and port standard
Electrostatic Discharge Protection	8 kV per each port pin
Overvoltage protection	bipolar 30 A (1 ms) TRANSZORBS™
Environmental specifications	
Temperature	MIL-STD-810D, 501.2 & 502.2 -50 °C to +70 °C
Humidity	MIL-STD-810D, 507.2 0 to 100% RH., not-condensing
Vibration	IEC-68-2-6 Fc 10 - 500 Hz, up to 2.2 g
Electromagnetic compatibility	IEC-801-4
Conducted emissions	MIL-STD-461C, CE03
Conducted susceptibility	MIL-STD-461C, CS02 (power leads)
Conducted susceptibility	IEC-801-4 (fast transient burst)
Radiated Emissions	MIL-STD-461, RE02
Radiated susceptibility	MIL-STD-461, RS03

See Figure 5-11 and Table 5-2 for DMC50 DIP switch settings.




Figure 5-11 DIP Switch Settings of the DMC50

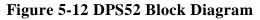

Board	Switch position	Switch setting	Function
DMC50	S2-1	OFF	Disconnect digital GND
			from CASE
	S2-2	ON	Enable watchdog timer
	S2-3	OFF	Disable download of operating
			system
	S2-4	ON	Enable SRAM battery back-up

Table 5-2 DII	P Switch	Settings	of	the	DMC50
---------------	-----------------	----------	----	-----	-------

5.3.7 DC Converter DPS52

The DPS52 DC Converter is an efficient and self-monitoring power distributor board specially designed for the CT25K. Having five independent switch-mode voltage converters the board is capable of delivering up to 20W. Figure 5-12 shows the block diagram of DC Converter DPS52.

Totally 13 voltages are generated within five switching circuits. One stepdown switcher is reserved for both +5V and -5V outputs. One flyback switcher produces +18V for CPU, +12V, -12V for optics monitor and 65V for transmitter. Another isolated flyback switcher generates five receiver voltages +13VR, -13VR, +5VR, -5VR and +400VR. All these voltages are normally supplied by two 18VAC windings. The second supply rectified from two 10VAC windings is reserved for internal battery charger, heating power for transmitter and inheater and outheater control relays.

All voltage and two temperature channel measurements along with several internal and external functions are controlled by a two-wire serial $I^{2}C$ bus. Identification and other board specific parameters are also saved in EEPROM via this bus.

The internal battery charger keeps the sealed lead acid battery in maximum charge and ready for power back-up. The battery is charged in four phases or states:

- trickle charge, while battery voltage is below normal
- *bulk charge*, while battery is charged with maximum current
- *over charge*, while battery voltage is raised over its temperature compensated level
- *float charge*, charge is complete and battery voltage is floating at the temperature compensated level

LED functions

Two LEDs are located in the upper part of the front panel:

POWER OK LED (D2) is lit when battery circuit is connected and charge is at least in bulk charge state and all voltages are ok.

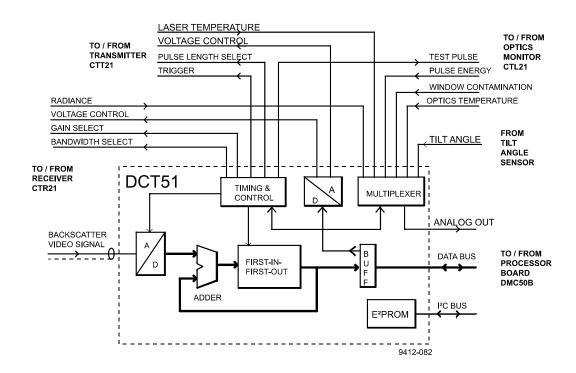
ACCESS LED (D1) is lit every two seconds indicating a voltage channel read cycle.

Internal switch settings

The following table describes the internal switch settings of DPS52. For normal operation all switches shall be OFF.

Switch	Switch	Function	Switch	Function
position	setting	s/w controlled	setting	manual
S1/1	OFF	not used	ON	not used
S1/2	OFF	digital/analog voltages ON	ON	digital/analog voltages OFF
S1/3	OFF	+/-5Vvoltages ON	ON	+/-5Vvoltages OFF
S1/4	OFF	receiver voltages OFF	ON	receiver voltages ON

Specifications


Input voltages:

Power Inputs:	Voltage ranges:
I (AC):	10 22VAC
I (DC):	11.5 30VDC
II (AC):	9 12VAC
II (DC):	9 16VDC

Output voltages:

Acceptable Range (V)	Nominal current(A)
5.0 5.8	0.15
-5.85.0	0.05
5.0.5.8	0.45
16.0 18.5	0.010
12.0 13.5	0.1
-13.511.5	0.1
6090	0.015
12.0 14.0	0.02
-14.012.0	0.01
4.85.2	0.06
-5.84.5	0.07
360425	0.003
11.5 16.5	00.5
	Range (V) 5.0 5.8 -5.85.0 5.0 5.8 16.0 18.5 12.0 13.5 -13.511.5 60 90 12.0 14.0 -14.012.0 4.8 5.2 -5.84.5 360 425

5.3.8 Ceilometer Interface Board DCT51

Figure 5-13 DCT51 Block Diagram

The Ceilometer Interface Board DCT51 together with the Processor Board DMC50B are the main components in obtaining the LIDAR backscatter signal, controlling the laser transmitter as well as in real-time processing of the backscatter signal from the receiver as described in Paragraph 5.2.2. Additionally the ceilometer interface board DCT51 contains special circuitry for the timing of all activities and a very fast flash A-to-D Converter. The

backscatter signal detected by the photodiode in the receiver is sampled in real-time in this subassembly at the speed equal to that of the light beam in the atmosphere sent from the laser transmitter. All Range Gates are sampled at each laser pulse and digitized by means of the 8-bit flash A-to-D converter. They are stored in a First-In First-Out (FIFO) memory according to the height profile (Figure 5-13).

For improving the Signal-to-Noise Ratio a large number of laser pulses is utilized and the samples are added to the FIFO memory in digital format. This way, a complete backscatter profile is then available at the end of a complete measurement cycle. The raw values are sent via a data bus directly to the Random Access Memory on the processor board to be algorithmically evaluated. A Digital-to-Analog converter outputs control signals to the laser transmitter and receiver. The D-to-A converter is also controlled through the data bus of the processor board.

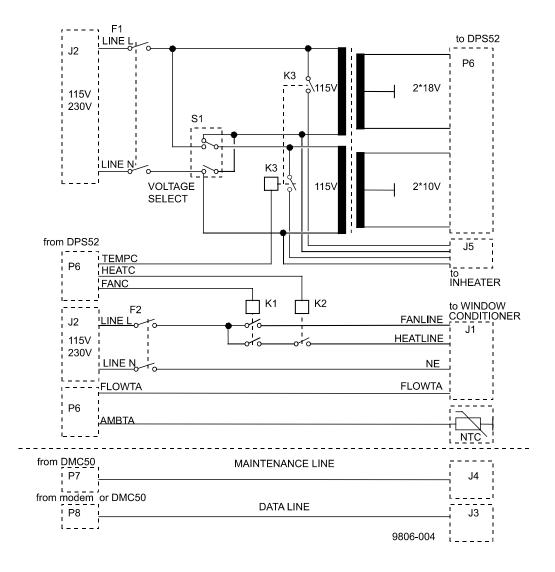
A multiplexer contributes to the monitoring of different analog signals from the optics monitor, for temperature measurement of the laser and for angle measurement of the tilt angle. Controlled by the processor, it connects the analog signals to the A-to-D converter of the processor board.

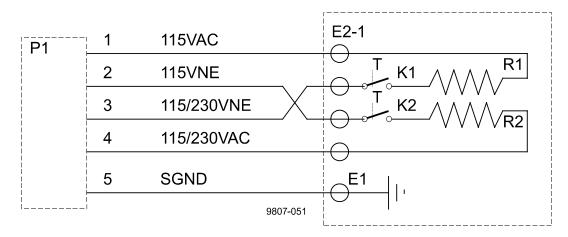
The timing and control circuit takes care of the triggering and length of the laser pulse and simultaneously for the selection of receiver gain and bandwidth. The system parameters, as they are defined in the configuration and factory settings, are stored in a special EEPROM on the DCT51 board. The data transmission to and from the EEPROM is carried out through an I²C Bus which is independent of the actual Data Bus.

5.3.9 Line and Power Interface Subassembly CTP241

Line AC power is connected to the Line Power and Interface Subassembly CTP241, where it gets transformed down to low-voltage AC for supplying the DC Converter DPS52. Further, the CTP241 contains relays for controlling the Internal Heater (CT25039) and the external Window Conditioner blower motor and airflow heater. Internal heating and window conditioning are under software control via DC Converter DPS52.

Line Power and Interface Subassembly CTP241, Internal Heaters' Subassembly CT25039 and Window Conditioner CT2614 or CT2688 contain Line AC voltage, which may be lethal.




Figure 5-14 CTP241 Wiring

Line voltage selection 100...115 VAC or 220...240 VAC is carried out in the CTP241 by an internal switch, the setting of which is written on the label on the subassembly. This setting also accomplishes the series vs. parallel connection of Internal Heater resistors.

NOTE

For complete power disconnection, both the main switch at CTP241 and the battery switch must be turned to position "OFF". Otherwise the unit is still supplied through the batteries and higher voltage levels inside the unit are possible although the line voltage is disconnected. For normal operation, both switches must be turned to position "ON".

Some of the electronics subassemblies are provided with integral voltage regulators, which internally regulate the actual voltage necessary for operation.

5.3.10 Internal Heaters Subassembly CT25039

Figure 5-15 CT25039 Wiring Diagram

The Internal Heaters subassembly CT25039 increases the temperature in the area of the optical subassembly to prevent the lens and the measurement unit window from becoming wet or misty. At the same time it also keeps the whole interior above condensation temperature.

The heating subassembly consists of two power resistors with radiation elements made of aluminium. This provides a good thermal contact with the base plate and transmission of heat to the ambient air. Thermal switches protect the system against overheating.

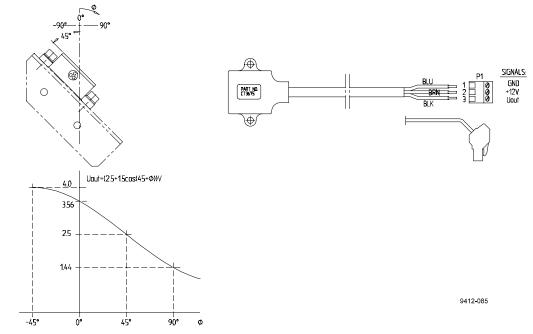
At 230 V supply voltage the resistors are connected in series by the line voltage selection switch in the subassembly CTP241 and at 115 V supply voltage they are connected in parallel. A relay in the CTP241 switches power on/off under software control via DPS52.

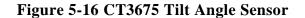
WARNING

The heating resistors can be very hot even after the heating has been switched off! Be cautious when working in the vicinity of the heating!

Specifications:

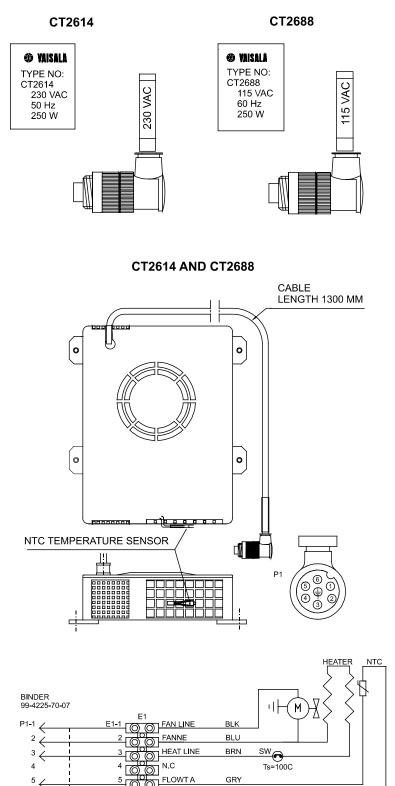
Maximun	n power	180W (115VAC +15%, 230VAC +15%)
Max. surf	ace temperature	130°C
Heating r	esistors (R1, R2):	
-	type	HS100
-	resistance	220Ω
-	power	100W


Thermal switches (K1, K2):


- switch temperature 95 105°C
- nominal current 2.5A
- operating voltage 250VAC

5.3.11 Tilt Angle Sensor CT3675

The built-in tilt angle sensor CT3675 enables accurate cloud base measurements in a tilted direction. See section 2.4 for information about alternatives on how to use the tilt feature.


MOUNTING POSITION IN VERTICALLY POINTED CT25K

The tilt angle sensor CT3675 contains a silicon micromechanical acceleration sensor. It measures the Earth's gravitational force as projected on the ceilometer axis. Every change in its position from vertical results in a measurement signal dependent on the angle, which ranges from -15 to +90 degrees from vertical. Internal temperature compensation and linearization circuits provide high stability. The output voltage of the angle sensor is digitized through the processor board A-to-D converter and used for automatic correction calculation, which enables accurate function in a tilted direction. Automatic correction can be disabled with command SET MESSAGE ANGLE_COR OFF. Tilt angle can also be set manually, as described in section 4.7.

5.3.12 Window Conditioner CT2614 / CT2688

6

7

Figure 5-17 Window Conditioner CT2614/CT2688

WHT

YEL/GRN

TO BE CONNECTED TO HEATER. FAN AND CASE EARTH

FLOWT B

7

The Window Conditioner consists of a blower motor, heating element and an NTC temperature sensor inside an enclosure. The air stream from the blower is directed across the measurement unit window for clearing it from water drops, condensed humidity, snow and particles.

The blower is automatically switched on when contamination or precipitation is detected on the window surface or when the atmospheric measurement indicates that a high risk of precipitation exists. The temperature sensor is used for determining whether the heater should be turned on or not. All of this is done under software control via DPS52 and CTP241.

Because the window of the measuring unit is declined and the blower air is directed from up to down on its surface, water drops and snow are effectively removed.

CAUTION

There are two different window conditioners for the two supply voltages 230 V and 115 V. The plug for the correct connection cable has a marking indicating its nominal voltage.

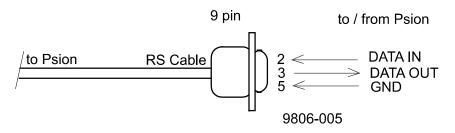
WARNING

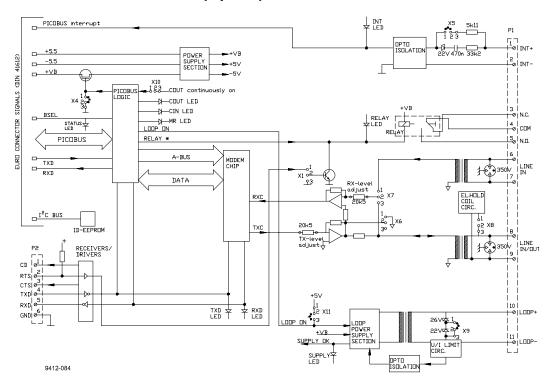
The heating resistors can be very hot even after the heating has been switched off! Be cautious when handling in the vicinity of the heating!

5.3.13 Maintenance Terminal PSION3 (Option)

The Palmtop computer PSION3 is offered as an optional light-weight maintenance terminal. This is supplied with Series 3 Serial Link, RS232 serial interface. PSION3 is a pocket-size terminal with high resolution display. It includes RAM and FLASHRAM for data storage. Two standard Mignon AA batteries enable operation for 20 hours.

The RS232 interface RS cable has a standard 9 pin connector illustrated in figure 5-18. The RS cable is connected to Terminal cable CT3840 which is connected to the CT25K's maintenance line connector J4.




Figure 5-18 RS Cable

Standard port settings are the following:

Baud rate	2400
Data bits	7
Stop bits	1
Parity	Even
Ignore parity	Yes

For setting up PSION3 see section 2.7 Connection of maintenance terminal.

For further information about PSION3 and Series 3 Serial Link see manuals included in the delivery.

5.3.14 Modem DMX55 (Option)

Figure 5-19 DMX55 Block Diagram

Modem DMX55 is a universal modem primarily for fixed point-to-point connections. The operation mode of the modem is set at the factory.

Over a fixed point-to-point line the modem can be operated in an ANSWER or an ORIGIN mode. The modem supports different standards such as V.21, V.23 and Bell 103/202. The CT25K options are ITU-T V.21 and Bell 103.

Safety precautions

Before delivery, the DMX55 modem is tested at the factory for operation and safety. The following safety precautions, however, must be taken into account:

Open data lines can have a static charge. Handle the connection wires especially carefully, do not touch them during a thunderstorm. The existing voltages can be dangerous.

LED Indicators

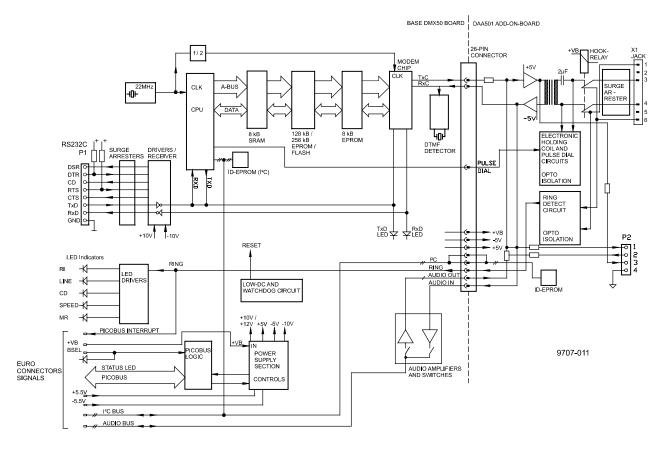
The DMX55 Modem features the following front panel LED indicators:

STATUS	Modem operation status, blinking when the processor is active
INT/RI	Interrupt (Ring indicator)
COUT	Transmitting data
CIN	Receiving data
TXD	Transmitted data (data onto modem line)
RXD	Received data (data from modem line)
SUPPLY	Power supply
RELAY	Indicator relay closed
MR	Modem Ready

Connector layout

The internal signal routing of the CT25K connects the modem outputs to connector J3. For further details, refer to the wiring diagrams.

The front panel is provided with the following connections.


6-pin RS232 Connector (P2)

1	CD	Carrier Detection
2	RTS	Request To Send
3	CTS	Clear To Send
4	TXD	Transmitted Data
5	RXD	Received Data
6	GND	Ground

11-pin Connector (P1)

1	+INT	+Interrupt
2	-INT	-Interrupt
3	N.C.	Normal Closed
4	COM.	Relay Common
5	N.O.	Normal Open
6&7	LINE IN	Line In - when separate transmission and
		reception lines are used (4-wire connection)
8&9	LINE OUT	Line In/Out - when standard 2-wire connection is
		used or only Line Out at separate wire for
		transmission and reception
10	+LOOP	Power supply + (not used in CT25K)
11	-LOOP	Power supply - (not used in CT25K)

5.3.15 Modem DMX50 (Option)

Figure 5-20 DMX50 Block Diagram

Modem DMX50 is a universal modem for fixed or switched point-to-point connections. The operation mode of the modem is set at the factory.

The modem supports standards V.21, V.22, V22 bis and Bell 103 & 212.

Safety precautions

Before delivery, the DMX50 modem is tested at the factory for operation and safety. The following safety precautions, however, must be taken into account:

Open data lines can have a static charge. Handle the connection wires especially carefully, do not touch them during a thunderstorm. The existing voltages can be dangerous.

LED Indicators

The DMX50 Modem features the following front panel LED indicators:

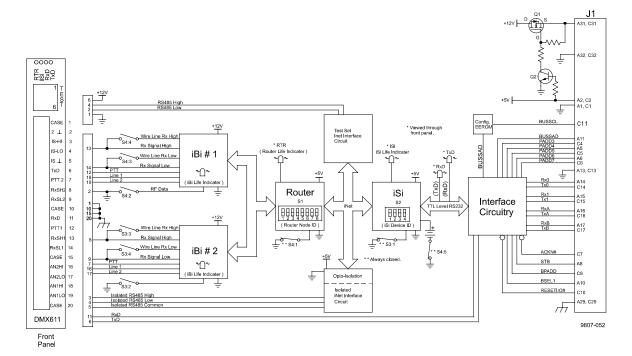
STATUS Modem operation status; blinking when the processor is active RI **Ring Indicator** LINE Indicates that the modem is online (off-hook) CD Carrier Detection (is ON, when the carrier signal is received) TXD Transmitted Data RXD **Received** Data SPEED Indicates that modem line speed is 2400 bits/sec (blank when 300 to 1200 bits/sec) MR Modem Ready; blinking once per sec when Test Mode is active

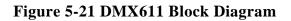
Connector layout

8-pin RS232C connector:

- DSR Data Set Ready
- DTR Data Terminal Ready
- CD Carrier Detection
- RTS Request to Send
- CTS Clear to Send
- TXD Transmitted Data
- RXD Received Data
- GND Ground

4-pin connector:


This connector carries telephone line audio signals for special applications, and SHALL NOT BE CONNECTED when the DMX50 is to be used over public telephone lines.


6-pin connector:

For line connection. The attached modular telephone cable connector shall be connected to this jack.

5.3.16 DMX611 ANet[™] Interface (Option)

The DMX611 serves as an interface between the CT25K and Vaisala proprietary Anet and Inet busses.

LED indicators

The front panel has four LEDs. They have labels RTR, ISI, RxD and TxD. The definitions of these LEDs, during normal operation, are as follows:

- RTR Router life. This LED will flash at one flash per second, indicating the Router portion of the DMX611 is actively executing code.
- ISI iSi life. This LED will flash at two flashes per second, indicating the iSi portion of the DMX611 is actively executing code.
- RxD This LED will flash as the DMX611 receives data from the CT25K (or from any device attached to the front panel RxD input).

TxD This LED will flash whenever the DMX611 sends data to the CT25K (or to any device attached to the front panel TxD output).

Connector layout

Phone jack

The front panel has a six pin modular phone jack, that is labeled TEST. It is designed for a hand held testset. The phone jack will allow communication to the CT25K via the iSi. To verify proper operation of the DMX611, the phone jack will also allow direct Inet communication to the Router, iSi and the front panel isolated Inet connection.

20-pin connector on the front panel

1	CASE	Case Ground
2	\bot	5V and 12V Common
3	IS-HI	Isolated RS485 High (Inet)
4	IS-LO	Isolated RS485 Low (Inet)
5	IS \perp	Isolated RS485 Common
6	TxD	RS232 Input
7	PTT 2	Channel 2 Radio Link PTT
8	RxSH2	Radio Link/Wire Link Channel 2 High
9	RxSL2	Radio Link/Wire Link Channel 2 Low
10	CASE	Case Ground
11	RxD	RS232 TTL Level Output
12	PTT 1	Channel 1 Radio Link PTT
	PTT 1 RxSH1	-
13		Channel 1 Radio Link PTT
13 14	RxSH1	Channel 1 Radio Link PTT Radio Link/Wire Link Channel 1 High
13 14 15	RxSH1 RxSL1	Channel 1 Radio Link PTT Radio Link/Wire Link Channel 1 High Radio Link/Wire Link Channel 1 Low
 13 14 15 16 	RxSH1 RxSL1 CASE	Channel 1 Radio Link PTT Radio Link/Wire Link Channel 1 High Radio Link/Wire Link Channel 1 Low Case Ground

19 AN1LO Anet Channel 1 Low

20 CASE Case Ground

DIP Switch Settings

S1		S2
(Router Node ID)		(iSi Device ID)
S1:1 LSB - Node ID	S2:1	LSB – Device ID
S1:2	S2:2	
S1:3	S2:3	
S1:4	S2:4	MSB - Device ID
S1:5		
S1:6		
S1:7		
S1:8 MSB - Node ID		

S3	S4
S3:1 (keep closed)	S4:1 (keep on)
S3:2 RFDATA - iBi2	S4:2 RFDATA - iBi1
S3:3 Wire HI - iBi2	S4:3 Wire LO - iBi1
S3:4 Wire LO - iBi2	S4:4 Wire HI - iBi1
	S4:5 (keep on)

Descriptions:

LSB	Least Significant Bit
-----	-----------------------

- MSB Most Significant Bit
- For switch S1: OPEN = Logic 0
- For switch S2: OPEN = Logic 1

Switch 3 and 4 settings:

S3:2 – OPEN for wire link – CLOSED for radio link

S3:3 - CLOSED for wire link - OPEN for radio link

S3:4 – CLOSED for wire link – OPEN for radio link

S4:2 – OFF for wire link – ON for radio link

S4:3 – ON for wire link – OFF for radio link

S4:4 – ON for wire link – OFF for radio link

5.4 Sky Condition Algorithm

5.4.1 General

The CT25K sky condition algorithm uses a time series of ceilometer data to calculate the cloud cover and the heights of different cloud layers. The algorithm is based on so-called Larsson algorithm, developed by Swedish Air Force and Swedish Hydrological Institute (SMHI), but further modified at Vaisala. The sky condition information is included in data messages 6 and 7. The algorithm updates sky condition information every five minutes, based on data gathered during the last 30 minutes. The algorithm reports up to four different cloud layers below 25000 feet.

Sky condition information can be displayed with the DD50 Digital Display.

NOTE

The CTC21 Controller Unit, DR21 Data Recorder and the CT-VIEW software version 1.05 or earlier, can NOT display the sky condition information.

5.4.2 Option code

The sky condition algorithm is included in the 2.01 software. The user activates the algorithm by giving an option code number to the ceilometer. The option code number is based on the DMC50B Processor Board serial number. If the CT25K ceilometer is purchased with the sky condition activated, then this is done at the factory. In case the sky condition option is purchased afterwards, the user can find out the processor board serial number by giving the following commands:

```
CT:open
CEILO>advanced
PASSWORD ACCEPTED !
CEILO>get dmc_sn
DMC SERIAL NO.: 850509 (example)
CEILO>close
```

The processor board serial number is also written on top of the microprocessor circuit, with a letter as the year code. Forward the DMC50B serial number to Vaisala. In response, Vaisala will send the option code needed, for the example below: 48612.

5.4.3 Activation

The sky condition option code is set into the ceilometer with commands:

```
CT:open
CEILO>advanced
PASSWORD ACCEPTED!
CEILO>set option sky_cond on 48612 (example)
Code OK. Sky Condition option activated.
```

Then select the sky condition message type (msg6 or msg7) to be reported:

CEILO>set message type msg6 MESSAGE TYPE: 6 CEILO>close

NOTE

It is recommended to use a 15 or 30 seconds data acquisition interval with the sky condition option.

5.4.4 Algorithm overview

The sky condition algorithm collects data for 30 minutes. All cloud heights are rounded to the nearest 50 ft or 10 m and a weight factor is assigned. Each measurement has a total weight of five which is divided between different cloud layers according to table 5-3.

	1st layer	2st layer	3rd layer
1 layer detected	5	-	-
2 layers detected	3	2	-
3 layers detected	3	1	1

Table 5-3 Weight factors

In addition, a weight factor of 2 is applied to the data collected during the last 10 minutes to make the algorithm more responsive to variations in cloudiness.

The weighted cloud hits, counts, are assigned to the cloud height categories or bins (i.e. 0 ... 100 ft, 100 ft ... 200 ft etc.). The bin width increases with the distance according to table 5-4.

Height	Bin width
0-5000 ft	100 ft
5000-15000 ft	500 ft
15000-25000 ft	1000 ft

Table 5-4 Bin widths

The counts are summed starting from the lowest bin. The bins where the sum exceeds 1/33, 3/8, 5/8 and 7/8 of the maximum value are recorded as layer heights. The corresponding cloud amounts for these layers are 1,3,5 and 7 oktas. In addition, the minimum number of counts (hits) for each layer has to be exceeded:

1st layer	17 (3.4 hits)
2nd layer	10 (2 hits)
3rd layer	25 (5 hits)
4th layer	25 (5 hits)

Table 5-5 Minimum number of counts (hits) for each layer

In case the minimum count is not exceeded in the assigned bin, the algorithm seeks three bins upwards and then three bins downwards if one of these bins has the required number of counts. However, if none of the bins contains enough counts, the original bin is used as the layer height.

If the resulted layers are close to each other, it is reasonable to combine them rather than define them as separate layers. If the distance between two cloud layers is less than the minimum distance shown in Table 3-4, the layers are combined. The height of the combined layer is that of the lower layer and the cloud amount of the combined layer is that of the upper layer.

Layer height	Minimum distance
< 1 000 ft	100 ft
1 000 2 000	200 ft
2 000 3 000	300 ft
3 000 4 000	400 ft
4 000 5 000	500 ft
5 000 15 000	1 000 ft
15 000 25 000	5 000 ft

Table 5-6 Minimum distance between different cloud layers

Overcast (8 oktas) is reported if all the measurements during the last 30 minutes have a hit. Overcast height is assigned according to the bin where 14/15 of the total count value is exceeded.

However, overcast is not reported if there are "weak hits" during the latest 15 minutes period. A "weak hit" is defined as a backscatter signal which is less than 80% of the reference. The reference value depends on the previous measurements, i.e. it's a kind of sliding average value of signal strength.

Vertical visibility (VV) hits are considered as cloud hits if higher than 1500 feet. The cloud height is defined as (VV + signal range)/2. Lower VV hits are assigned to a VV register. If the percentage of VV hits in the register during the last 10 minute period exceeds the VLIM parameter value (see Table 4-1), the sky condition algorithm reports VV. The VV height is the average height of VV hits. Otherwise the lower hits are also considered as normal cloud hits, i.e. VV hits are assigned to cloud height categories (bins).

6. PERIODIC MAINTENANCE

Periodic maintenance is normally limited to window cleaning. In addition, Warnings and Alarms should be checked regularly with the maintenance terminal or another terminal or PC with serial connection (See paragraph 4.4.11 Status Message "S"). Proper function of the Window Conditioner air blower, the only mechanically moving part, should also be checked.

6.1 Alarms and warnings

The data message has to be checked for alarms and warnings at regular intervals. At the second character of line two there is Warning and Alarm information indicating the present status of the device as follows:

- 0 Self-check OK
- W At least one Warning active, no Alarms
- A At least one Alarm active

In case there is an active alarm or warning, more information is given at the end of the second line as a binary code indicating the cause (paragraph 4.4.1). The status message gives detailed information about the failure (paragraph 4.4.11).

Repair and service must be done according to instructions in Chapters 7 and 8.

6.2 Window Cleaning

The lens and window should always be clean of any dirt or particles during operation. Data messages include a warning if the window is contaminated.

After the system has detected the contamination it starts the blower, which removes contamination caused by precipitation etc.

- If the "Window Contaminated" warning does not disappear after a while the window has to be cleaned.
- To clean the window first flush it with water to remove coarse grains. During this operation, the enclosure door should be closed. Clean the window with a soft lint-free cloth moistened with a mild detergent. Be careful not to scratch the window surface.

The condition of the Window Conditioner air blower can be checked with the maintenance terminal connected. Give the commands:

SET CONTROL BLOWER ON SET CONTROL BLOWER OFF

In case of malfunction the Window Conditioner has to be replaced.

The door of the measurement unit utilizes an electrically conductive rubber gasket to suppress electromagnetic radiation. When the door is opened, check that the gasket and the opposite contact surface are clean. Use wet cloth for cleaning if necessary.

6.3 Battery check

Check the battery condition annually. If any signs of aging is observed like bulging battery case, white powder or residue near the battery vent, leaking electrolyte, corroded terminals etc. replace the battery. Lead acid batteries may age in 3 to 5 years time and result in a rupture and loss of electrolyte.

NOTE

When disposing of old batteries, be sure to do so in accordance with local environmental regulations.

NOTE

In freezing temperatures there is a danger of battery rupture if the battery is completely discharged. Do not store empty batteries in freezing temperatures. Replace the battery if signs of mechanical rupture are observed.

6.4 Storage

Have caps on all external connectors if stored unpacked for extended times in an unconditioned area. Also maintain a dust cover on the window during long periods of storage.

The container is suggested to be saved for future transport use. When replacing, the equipment shall be placed and padded in the same way as when initially received.

7. TROUBLESHOOTING

7.1 Normal Operation

7.1.1 Equipment

To check the normal operation of the CT25K you need to have a maintenance terminal which can be a PSION3 palmtop computer with an RS cable (RS232 Interface) and Terminal Cable CT3840 or a PC with serial interface, PC Terminal Cable CT35198, and any terminal program. CT-VIEW software can be used for this purpose. Also, if you perform the operation check indoors, you need to have an Optical Termination Hood (CT25184) which absorbs the laser light that otherwise would reflect from the ceiling and possibly saturate the receiver.

7.1.2 Instructions

To check the normal operation of the CT25K do the following steps:

- 1. Clean the window carefully with a soft lint-free cloth moistened with mild detergent. Be careful not to scratch the window surface.
- 2. If you are indoors, put the Optical termination hood (black hat) on the ceilometer window. From the ceilometers point of view this corresponds to a clear, nighttime sky.
- 3. Connect the maintenance terminal to the maintenance port at the bottom of the CT25K. Turn on both the CT25K and the maintenance terminal. If you are using the PSION3 or the CT-VIEW program for the first time, do the necessary installation according to the corresponding User's Guide instructions.

If you are using the PSION3 :

PSION3 is turned on for normal operation by pressing the key "Esc" or by pressing the special "Psion" key (\cup) together with "ON".

Choose the configuration CT25K from the System screen and press ENTER. The terminal is now ready for dialogue communication with the ceilometer.

Start the program by pressing ENTER. The prompt "CT: "should appear on the screen. If not, check the cables and port settings (see section 2.7.).

If you are using the CT-VIEW program :

Double click the CT-VIEW icon.

Choose Terminal from the main menu bar.

Press ENTER. The prompt "CT: "should appear on the screen. If not, check the cables and port settings (see CT-VIEW User's Guide).

- 4. Check that the operation of the ceilometer starts normally, as follows: After power-up routines, the MEAS LED D4 (LED = Light Emitting Diode) on the DCT51 board periodically lights 12 seconds and the cycle is repeated according to the programmed data acquisition interval. In the DC Converter DPS52 Board LED D1 should be blinking yellow and LED D2 should be stable green. Also, in the Processor board LED STATUS should be blinking at a 1 second interval.
- 5. Get the status message as follows: Press ENTER on the maintenance terminal (PC) keyboard and a CT: prompt should appear. Give the command OPEN and press enter.

CT> OPEN ↓

A CEILO> prompt should appear. Give command GET STATUS and press enter.

CEILO> GET STATUS →

Status format example :

VOLTAGES (UNIT 0.1V) P12 125 M12 -126 P5G 54 M5G -54 VCA 225 P13 128 M13 -124 P5R 50 M5R -50 BAT*098 P18 178 PHV 2306 PFB 17 P65 674 CHA 144 TRANSMITTER RECEIVER GAIN H PLEN L POTY 64K BAND N SAMP 10MHz OUT 1416mV SENS 101% SENS OK COMP 005 199 IN 190 TEMPERATURES ENVIRONMENT BLOWER +20C WINDOW 210mV 101% CPU +34C RADIANCE +60mV +29C ANGLE +3DEG LASER +34C HUMIDITY NONE LENS OUTSIDE +23C INHEATER ON OUTHEATER OFF BLOWER OFF

NOTE

If there are variables showing xxx-values in the status message, the power up routines are not finished. Wait for a while and ask for the status again.

6. Check the status message.

All the VOLTAGES, RECEIVER and TRANSMITTER values are within predefined limits if no asterisks (*) appear. An asterisk in front of a variable indicates that an alarm or warning limit of that variable is exceeded. In the status example above, the battery voltage is too low.

Check the TEMPERATURES. The OUTSIDE temperature should be close to the environment temperature. The CPU, LASER and LENS temperatures are typically 10-15 degrees higher than the OUTSIDE temperature.

Compare the ANGLE. If the ceilometer is in a vertical position (i.e. pointing upwards) the ANGLE should be $-2 \dots +2$ degrees.

7. Check the message line operation.

Give the commands:

SET MESSAGE PORT MAINTENANCE

The following lines should appear (example: Msg 1):

☎CTA2010じー 00 ///// //// //// 00000200ー 窓ー

Reading instructions for the second line, identical in all messages:

Message	0	0		/////	/////	FEDCBA98↓
Position	1	2	3	4	5	6

Position 1: 0 indicates that no cloud layers are detected

Position 2: 0 indicates that there are no warnings or alarms, W indicates a warning and A indicates an alarm.

Position 3 .. 5: ///// indicates no cloud heights

Position 6: Alarm (A), Warning (W), and internal status information. Each character is a hexadecimal representation of four bits, altogether 32 bits, with the following breakdown. Interpretation as follows:

F:	(8000 0000)	Laser temperature shut-off (A)
	(4000 0000)	Laser failure (A)
	(2000 0000)	Receiver failure (A)
	(1000 0000)	Voltage failure (A)
E:	(0800 0000)	(spare) (A)
	(0400 0000)	(spare) (A)
	(0200 0000)	(spare) (A)
	(0100 0000)	(spare) (A)

D:	(0080 0000)	Window contaminated (W)
	(0040 0000)	Battery low (W)
	$(0020\ 0000)$	Laser power low (W)
	$(0010\ 0000)$	Laser temperature high or low (W)
C:	$(0008\ 0000)$	Internal temperature high or low (W)
	(0004 0000)	Voltage high or low (W)
	(0002 0000)	Relative Humidity is > 85 % (option) (W)
	(0001 0000)	Receiver cross-talk compensation poor (W)
B:	$(0000\ 8000)$	Blower suspect (W)
	(0000 4000)	(spare) (W)
	(0000 2000)	(spare) (W)
	(0000 1000)	(spare) (W)
A:	(0000 0800)	Blower is ON
	(0000 0400)	Blower heater is ON
	(0000 0200)	Internal heater is ON
	(0000 0100)	Units are METERS if ON, else FEET
9:	(0000 0080)	Polling mode is ON
	(0000 0040)	Working from battery
	(0000 0020)	Single sequence mode is ON
	(0000 0010)	Manual settings are effective
8:	(0000 0008)	Tilt angle is > 45 degrees
	(0000 0004)	High backround radiance
	(0000 0002)	Manual blower control
	(0000 0001)	(spare)

For example, if the battery voltage is too low, a warning is given and the second line appears as

0₩ ///// ///// 00400200↓

In this example the internal heater is also on.

Check the operation of the window conditioner.

- 8. Wait until the 15 minutes start-up blowing has passed. Place a piece of white paper on the ceilometer window. Within one minute the blower should start. Remove the paper. Within one minute the blower should stop.
- 9. If there are clouds present, compare the ceilometer measurement with the qualified weather observer's height approximation.
- 10. In case there are no clouds present and if the site is suitable, do a hard target test. Turn the measurement unit 90 degrees and aim on a fixed target (wall, forest front, etc.).

NOTE

The minimum distance to a hard target should be 300 meters (1,000 ft). The backscatter signal from a hard target is very strong compared to the signal from a cloud. The receiver may saturate if the distance is too short.

When tilting the unit, make sure that nobody is watching it with binoculars or other magnifying optics.

Disable the automatic angle correction by giving commands :

CT> OPEN ,

CEILO>SET MESSAGE ANGLE_COR OFF J

CEILO>CLOSE↓

Compare ceilometer's distance reading to a reference measurement.

7.2 Troubleshooting

The purpose of this troubleshooting is to locate the problem. If a damage is suspected in a subassembly or a board, replace it with a spare part and send the defective part to Vaisala for repair.

NOTE

Replacements have to be done according to instructions given in the Instructions for Replacement of Parts in section 8 and are allowed for trained personnel only. As a principle, customer made repairs are restricted to replacement of subassemblies only.

7.2.1 Warnings

Status message info	Reason	Instructions
Window contaminated warning (Appears from time to time and lasts < 5 min)	Usually rain drops on the window	The blower will clean the window. If clouds are detected, the height information is correct. If no clouds are detected, it is
Window contaminated warning (Continuous)	Bird droppings, leaves, dust etc. have contaminated the window	possible that high clouds are missed. Clean the window

Battery low warning	The unit has been powered too long using the backup battery	Connect the line voltage or replace the battery
	Recharging of the battery fails	If the battery is old, replace it. If the battery is OK, check the operation of the DPS52 DC Converter.
Laser power low warning	Laser diode too old	Replace Transmitter CTT21.
	Optics monitor CTL21 failure	If you have replaced the Transmitter CTT21 and the warning did not disappear, replace the CTL21 Optics Monitor.
Laser temperature high or low warning	Environment temperature too high	If the environment temperature is above 60°C do not operate the ceilometer.
		Direct sunlight can burn the laser diode. Use Tropics window or turn the ceilometer away.
	Environment temperature too low	If the environment temperature is below -50°C the heating capacity is not sufficient. Do not operate the ceilometer.
	Ceilometer is battery operated	If the ceilometer is battery operated, all the heating functions are disabled and the unit can be operated only in temperatures above -10°C. Connect the line voltage and wait for a while.
	Heating fails	Check the Transmitter Board (CTT21) where the heating circuitry is located.
		Check that the DC Converter (DPS52) supplies the current for the heating.
Internal temperature high or low warning	Environment temperature above 60°C or below -50°C	Do not operate the ceilometer.
Voltage high or low warning	Line voltage is not OK	Check that the line voltage is present and correct.
	Ceilometer is battery operated	This warning is always given when the ceilometer is battery operated.
	DC Converter board DPS52 is damaged	Check the status message. If there is an asterisk (*), the voltage exceeds the limits.

Deletive humidity > 95	Water has hear	Take the sollowedge inside once the
Relative humidity > 85	Water has been condensed inside the	Take the ceilometer inside, open the
% warning (option)		maintenance door and let it dry in a
	ceilometer. Leakage in the enclosure or	warm air conditioned place.
		Condensed water on optical surface
	leakage in the door	may disturb the measurement. There
		is a danger for short circuits.
Receiver optical cross-	Obstacle or dirt on	Check the optical surfaces. Clean, if
talk compensation poor	the lens or on the	contaminated.
warning	window	
	The compensation	When sky is clear but the GAIN is
	fiber is damaged	low and the PLEN is short, the fiber
		is most likely broken. Remove the
		optical fiber carefully. Place the
		other end near a light source. If the
		light is dim at the other end of the
		fiber, the fiber is damaged. Replace
		it.
	The compensation	Do compensation adjustment
	fiber is misplaced	following the replacement
		instructions (Chapter 8. Repair)
Blower suspect	Cable is not	Check that the blower cable is
warning	connected	connected.
	Window conditioner	Check that the window conditioner
	circuit braker F2 is	circuit braker F2 is ON
	not ON	
	Line voltage level is	Check that the line voltage is present
	not correct	and correct.
	Blower is stuck	Check if visible obstacles disable the
		blower operation.
	Blower is damaged	Replace the blower.

7.2.2 Alarms

Problem	Reason	Instructions
Laser temperature shut- off	Direct sunlight	Direct sunlight can burn the laser diode. Use Tropics window or turn the ceilometer away.
	Environment temperature too high	Do not operate the ceilometer.
Laser failure	Laser is worn out or damaged	Check the operation of laser transmitter CTT21 and its cable connections.
	Laser does not get electrical power	Check from the status message if there is an asterisk (*) in front of any voltage value indicating malfunction in the DPS52 DC Converter board.
	Outgoing laser power failure	Check that the Optics Monitor CTL21 board is not misplaced or damaged.
	INLASER setting does not function	Check the operation of the Ceilometer Interface Board DCT51.
Receiver failure	Loose cable connection	Check that the cables from the receiver CTR21 and from the Optics monitor CTL21 are undamaged and connected correctly.
	Receiver test not operating	Check that the Optics Monitor CTL21 board is not misplaced or damaged.
Voltage failure	DC Converter board DPS52 is damaged	Check the status message. If there is an asterisk (*), the voltage exceeds the limits.

Problem	Reason	Instructions
DPS52 Power OK LED	Power is not	Check that both the main and the battery
(D2) is not lit	connected	switches are in ON position.
		Check the presence and correctness of the
		line voltage. Check also that the battery is
		OK.
	Loose cable	Check the cable connections.
	connection	
DCT51 LED D4 is not	DMC50B or	Check from the status message if the
lit	DCT51 is	voltages are present and correct. If yes,
	damaged	suspect a damage in the DMC50B or
		DCT51 board.
The period of LED D4	Self-check not	Unit is unable to finish the compensation
in the DCT51 board is	finished in 5	adjustment. If the unit is operated indoors
much shorter than the	minutes	use the optical termination hood (black
normal 15 sec.		hat). Other causes may be a dirty window
measurement interval.		or a broken compensation fiber.
Data message is	Dialogue not	Check the cable connections.
missing	operating	Open the terminal program and press the
		ENTER key a few times. The ceilometer
	XX7	should respond with CT: prompt.
	Wrong	Check the communication parameters
	communication	(number of bits, parity, etc.).
	parameters	Onen the terminal program and first give
	Wrong data port	Open the terminal program and first give OPEN command and then GET
		MESSAGE command. Check that the
		PORT is set to DATA.
	Operation mode	Open the terminal program and first give
	standby	OPEN command and then GET
	~ 5	OPER_MODE command. Check that the
		OPERATION MODE is CONTINUOUS.
Cloud detection	Alarm or	Open the terminal program and first give
missing	warning in the	OPEN command and then GET STATUS
	data message	command. Check that the there are no
		alarms or warnings.
	CT25K	Compare parameters with the parameters
	parameters are	of the delivery documents.
	not correct	
Reduced capacity to	Broken or	When sky is clear but GAIN is low and
see high clouds	misplaced	PLEN is short, the fiber is most likely
	compensation	broken. Remove the optical fiber carefully.
	fiber	Place the other end near a light source. If
		the light is dim at the other end of the
		fiber, the fiber is damaged. Replace it.

7.2.3 Miscellaneous

7.3 Failure Diagnosis

In case of malfunction do the following:

- 1. Check the cable connections (see 2.5).
- 2. Check the presence and correctness of the line voltage.
- 3. Check the operation states of the LEDs in the unit (see 3.1).
- 4. At the data line, check that the connection and the configuration is correct (see 1.2.4 and 2.5).
- 5. Switch on the unit (see 3.1, all switches to position ON).
- 6. Check the data messages by using the maintenance terminal (see 4.4).
- 7. Check the adjustment of the unit (parameters, see 4.6).
- 8. Check the status message (see 4.4.11).

The diagnosis is made on the basis of the information given in the status message (see 7.2).

NOTE

Service has to be done according to instructions given in this manual and are allowed for trained personnel only. As a principle, customer made repairs are restricted to replacement of subassemblies only.

8. REPAIR

8.1 General

Replacing a subassembly comes into question when there is reason to suspect that malfunction of the Ceilometer CT25K is caused by a fault in that subassembly.

Servicing the equipment must be performed by qualified personnel.

NOTE

Return instructions

In case a suspected subassembly is returned to Vaisala, please pack the shipment board using good quality ESD protection bag with suitable cushion material in a strong box. Please also enclose a paper with your contact information and detailed description of the problem inside the same box.

8.2 Writing conventions used

Replacement of a subassembly may require parameter settings that are specified in the description of that subassembly. The commands are expressed in this manual as follows:

COMMAND↓

where:

- COMMAND command given by the user, can consist of several command words (and parameters) e.g. GET STATUS↓
- → symbolizes pressing the ENTER key

NOTE

All words of the commands shall be separated from each other by a space character i.e. by pressing the space bar.

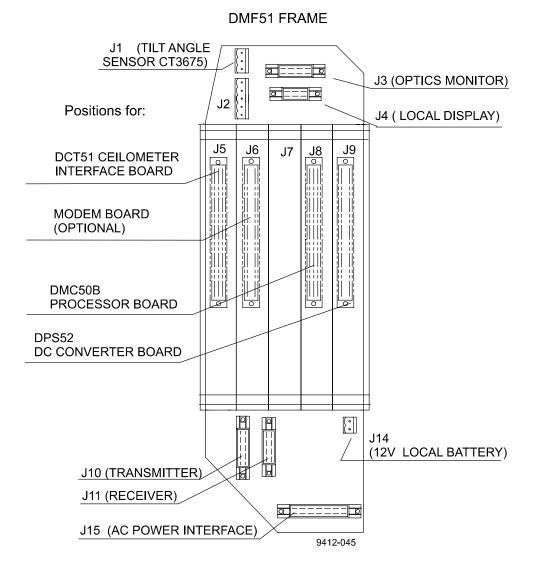
Every user command must be ended by pressing the ENTER key, illustrated in this manual by \downarrow .

8.3 Start-up procedure for replacement (all parts)

Replacement can be done outdoors even in the presence of light precipitation but in this case take care that the removed subassembly remains dry and no water gets into the interior of the Ceilometer CT25K. However, if adjustment is needed after replacement then that must be done in clear weather conditions or indoors using the Optical termination hood (CT25184).

Before you start to remove or replace parts do as follows:

- 1. Open the enclosure door of the Ceilometer.
- 2. Turn the Circuit Breakers F1 and F2 to OFF position.
- 3. Turn the Battery Switch OFF
- 4. Detach all cables from the external connectors J2...J4.


Tilting the Ceilometer unit slightly backwards gives better access to the interior. To tilt the unit, loosen the two screws of the pedestal first. Tilting backwards must not be done in rainy weather.

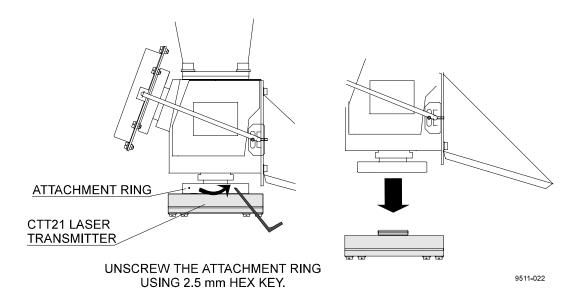
Clean the window by flushing it with water to remove coarse grains. During this operation, the enclosure door should be closed. Use a soft lint-free cloth moistened with mild detergent. Be careful not to scratch the window surfaces.

Check also the condition of the shield and clean it if necessary.

NOTE

Outdoor adjustments should be done in clear weather conditions (no precipitation, no fog present and no clouds below 1,000ft). Also the window must be clean. If the ceilometer is serviced indoors, or outdoors with fog or clouds below 1,000 ft present, then an **Optical termination hood (CT25184)** must be used to prevent the receiver from saturating from the backscatter signal. Optical termination hoods can be purchased from Vaisala.

Refer to Figure 8-1 for cable connections of the subassemblies.


8.4 Transmitter CTT21

8.4.1 Removal

The laser diode at Laser Transmitter CTT21 emits invisible laser power which is harmful to the eye if viewed at short distance. Never remove the transmitter from its normal position without first switching both the line and the battery power off and detaching the ribbon cable of Laser Transmitter CTT21 from the Board Frame DMF51. When there is reason to suspect malfunction of the Transmitter, turn the power off (Note Paragraph 8.3 Start-up procedure) and do as follows:

- 1. Detach the ribbon cable connector of the transmitter from connector J10 at the DMF51 Board Frame by pressing the latches apart. Refer to Figure 8-1 above.
- 2. Loosen the attachment ring (Figure 8-2) using a 2.5 mm Hexagon Key as a lever; there are holes in the attachment ring for that purpose. If the Transmitter begins to move along, stop it by hand from rotating. The laser diode has been centered at the factory do not apply force to the Transmitter because it may disturb the centering. Take the Transmitter in your hand.
- 3. Deliver the entire Transmitter to Vaisala.

Figure 8-2 Removing the Laser Transmitter

8.4.2 Replacement

To replace a Laser Transmitter CTT21 (Note Paragraph 8.3 Start-up procedure.):

1. Take the Transmitter CTT21 in your hand and set it in place. Notice the right position, the ribbon cable comes out from the back side. Rotate the attachment ring (Figure 8-2) by hand and tighten it using a 2.5 mm hexagon key as a lever. If the transmitter begins to move along, carefully stop it by hand from rotating. Do not apply force to the transmitter itself because it may disturb the centering.

Check that the transmitter is now in the correct position, that is, the sides of the transmitter case are approx. parallel with the edges of the lower part of the Optical Subassembly.

If this is not the case, loosen the attachment ring first, then correct the transmitter position and fasten as described above.

- 2. Attach the ribbon cable connector to the DMF51 Board Frame to connector J10. Refer to Figure 8-1.
- 3. Connect the Power Cable and the Maintenance Terminal. Turn the power on.
- 4. If the transmitter has been replaced by a new one, do the following:
 - a) Open the command set by first typing OPEN→ at the command prompt and then typing the password ADVANCED→.
 - b) Interrupt autoadjustments with the command

STOP↓

Then give the following commands

SET DATA_ACQ AUTOADJ OFF	sets the autoadjustments off
SET PORT TIMEOUT 20↓	sets the timeout of the dialog to 20 minutes
SET DATA_ACQ INTERVAL 15↓	sets interval for measurement and message sending to 15 seconds

c) First check the prevailing settings with the command

GET FACTORY↓

The value of INLASER tells the prevailing factory setting of the Transmitter Calibration Factor.

d) Note the Calibration Factor of the transmitter (written on the subassembly). If the transmitter has been replaced and the Calibration Factor differs from the prevailing factory setting, give the new Calibration Factor value (= new factory setting) with the command:

SET FACTORY INLASER↓

and type the new Calibration Factor value \downarrow .

e) Set the laser power into effect with the command

SET DATA_ACQ TRANSMIT POWER_OF_P

and type the new value (= Calibration Factor) \dashv . (The same Calibration Factor value as in step d).

f) Wait until a few measurement cycles have been completed, and the new value has been updated in the status message. Give the command

GET STATUS↓

- g) Check from the status message under the title Transmitter that the IN value of the transmitter in question equals the Calibration Factor.
- h) Check from the status message under the title Transmitter the OUT value which tells you the measured optical power, and write it down. Give the command

SET FACTORY OUTLASER↓

Wait again until a few measurement cycles have been completed, and the new value has been updated in the status message. Give the command

GET STATUS↓

Check from the status message that the Transmitter SENS percentage is in the range 99%...101%. This tells you the present measured OUT value compared to the factory setting.

i) Check further from the status message under the title Environment the WINDOW value and write it down. Set this value as a reference value of a clean window with the command:

SET FACTORY WIN_CLEAN↓

Wait again until a few measurement cycles have been completed, and the new value has been updated in the status message. Give the command

GET STATUS↓

Check from the status message that the WINDOW value percentage is in the range 97%...103%. This tells you the present measured WINDOW contamination value compared to the factory setting.

- j) Then adjust the Internal Crosstalk Compensation according to Paragraph 8.4.3.
- 5. Turn the power off. Then start the Ceilometer again and verify that it is operating properly.

8.4.3 Compensation adjustments

Internal crosstalk compensation must be adjusted after a transmitter, a receiver or an optics monitor has been replaced or if the compensation fiber has been replaced. Adjustment should be done in clear weather conditions or indoors using the Optical termination hood (CT25184).

After the command set has been opened using the password ADVANCED give the following commands:

1. To interrupt autoadjustments give the command

STOP →

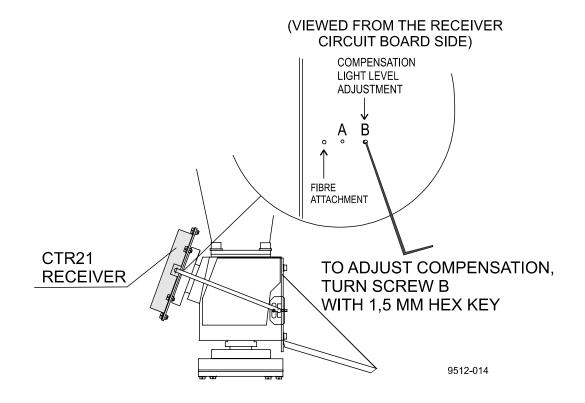
Then give the following commands:

SET DATA_ACQ AUTOADJ OFF

SET PORT TIMEOUT 20↓

which set the autoadjustments off and the timeout of the dialog to 20 minutes.

2. Give values for fine and coarse compensation as follows:


SET DATA_ACQ COMP COARSE 13↓ SET DATA_ACQ COMP FINE 125↓

3. Wait until a few measurement cycles have been completed. To monitor the quality of the compensation give the command

SET OPER_MODE COMP_MONIT

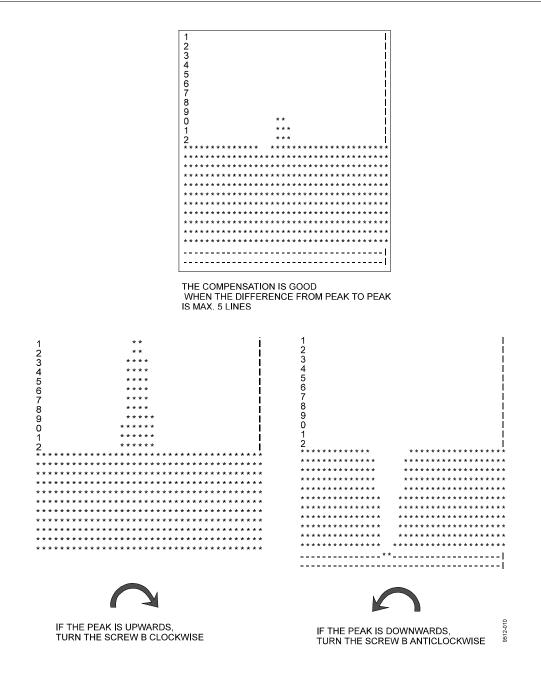
which gives you a graphical output as shown in Figure 8-4.

In case the graph differs from the graph shown in Figure 8-4, you have to adjust the Compensation light level manually. This is done via Screw B (Compensation light level adjustment) on the receiver CTR21 using a 1.5 mm hexagon key (See Figure 8-3). Later revisions of the receiver have a locking nut on screw B; if so, loosen it first. Turn the screw either clockwise or anticlockwise to optimize the form of the graph. If the peak of the graph broadens, change the direction.

Figure 8-3 Adjusting the compensation

Adjusting should not require more than a couple of turns. The screw should not move too easily after the adjustment has been completed. If a locking nut is in place, tighten it.

In case the graph does not get optimized the following faults are possible:


- The window or the lens of the ceilometer is extremely dirty
- The Optical termination hood required during the indoor adjustment is dirty or missing

Other possible faults are the following:

- Compensation Fiber itself is defective
- Receiver is damaged
- Beamsplitter at the lower end of the Optical Subassembly is broken etc.

In the latter case consult Vaisala.

4. Press the Esc key one or two times to stop the compensation monitoring.

Figure 8-4 Adjusting the compensation

5. Set the autoadjustments on with the following command:

SET DATA_ACQ AUTOADJ ON

6. Wait for some minutes. Give the command

GET STATUS↓

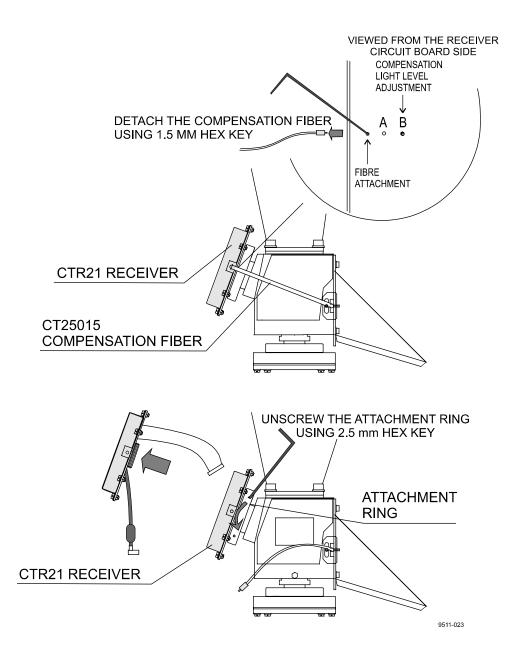
Check from the status message under the title Receiver that the COMP values, which are fine adjusted by the software, are close to the original 13 (Coarse) and 125 (Fine). In case either of these values has changed more than 3 steps, calculate the following sum:

17 x Coarse + Fine

If this value remains in the range 300...400, it is acceptable.

- 7. Wait again for at least one measurement cycle (15 seconds), and give the GET STATUS command. Check once more from the status message the Receiver COMP values. These should be the same as before, indicating that the automatic adjustment has stabilized.
- 8. Turn the power off and start the Ceilometer again in order to verify that the unit is operating properly

8.5 Receiver CTR21


8.5.1 Removal

WARNING

Hazardous voltage 500 V is present at the Receiver and at the Board Frame DMF51. Both the line and the battery switches must be turned off before removing the Receiver.

When there is reason to suspect malfunction of the Receiver (i.e. Receiver Failure Alarm or Receiver Optical Crosstalk Compensation Poor Warning exist) follow the instructions below (First note Paragraph 8.3 Start-up procedure.). In case there is reason to suspect failure in the Coaxial Cable instead of the Receiver, refer to Paragraph 8.5.3. In case the compensation fiber is suspected, refer to Paragraph 8.6.

- 1. Detach the Compensation Fiber from the receiver by loosening the screw (See Figure 8-5) with a 1.5 mm hexagon key and pulling the fiber end gently out. Do not twist the compensation fiber.
- 2. Detach the Receiver Ribbon Cable Connector from the connector J11 at the DMF51 Board Frame by pressing the connector latches apart. Refer to Figure 8-1.
- 3. Detach the Coaxial Cable from the DCT51 front panel.
- 4. Loosen the attachment ring (See Figure 8-5) using a 2.5 mm hexagon key as a lever; there are holes in the attachment ring for that purpose. If the Receiver begins to move along, stop it by hand. The photo diode has been centered at the factory do not apply force to the Receiver because that may disturb the centering. Take the receiver into your hand and detach the Coaxial Cable from it.
- 5. Send the defective receiver to Vaisala.

Figure 8-5 Removing the Receiver

8.5.2 Replacement

To replace Receiver CTR21 (Note Paragraph 8.3 Start-up procedure):

- 1. Attach the Coaxial Cable to connector J2 at the receiver. Note the marked ends of the cable.
- 2. Take the Receiver into your hand and set it in place. Note the right position, the ribbon and coaxial cables come out from the back side. Rotate the attachment ring (Figure 8-5) first by hand and then tighten it using a 2.5 mm hexagon key as a lever. If the receiver begins to move along, carefully stop that by hand. Do not apply force to the receiver itself because it may disturb the centering.

Check that the receiver is now in the correct position, that is, the long edges of the receiver case are approx. horizontal. If this is not the case, loosen the attachment ring first, then correct the receiver position and fasten as described above.

- 3. Plug the Compensation Fiber into the receiver and tighten the screw (marked Fibre attachment) with a 1.5 mm hexagon key.
- 4. Attach the Coaxial Cable to the J1 connector at the front panel of DCT51.
- 5. Attach the ribbon cable connector to DMF51 Board Frame connector J11. Refer to Figure 8-1.
- 6. Connect the Power Cable and the Maintenance Terminal. Turn the power on.
- 7. If the receiver has been replaced by a new one, do the following parameter settings:
 - a) Open the command set by first typing OPEN→ at the command prompt and then typing the password ADVANCED→.
 - b) Adjust the internal crosstalk compensation according to Paragraph 8.4.3.
 - c) Turn the power off and start the Ceilometer again in order to run the automatic receiver self-check.
 - d) Open the command set by first typing OPEN→ at the command prompt and then typing the password ADVANCED→.
 - e) Interrupt autoadjustments with the command

STOP↓

Then give the following commands:

SET PORT TIMEOUT 20₊J	sets the timeout of the dialog to 20 minutes
SET DATA_ACQ INTERVAL 15↓	sets minimum measurement interval

f) Give the command

GET STATUS↓

Wait until the SENS parameter under the title Receiver in the status message gets a value. It may take a couple of minutes, because the automatic receiver self-check is performed during the fourth measurement cycle. Check that the SENS value is OK. The receiver sensitivity tells you the present measured receiver value compared to the factory setting. If the SENS value is OK, the receiver installation is ready and you can skip steps g) and h).

g) If the SENS value is not within range, type the following command

GET VALUE OTHERS RECVALUE↓

which prints the measured receiver test values on your screen. Note the OUT value and write it down.

Then give a new receiver test value with the command

SET FACTORY RECVALUE

and type the recent OUT value of the output RECEIVER TEST VALUE.

h) Wait until a few measurement cycles have been completed. Give the command

GET STATUS↓

Check in the status message the SENS value, which should be OK.

5. Turn the power off. Start the Ceilometer again and verify that it is operating properly.

8.5.3 Coaxial Cable Replacement

In case Receiver Failure Alarm or Receiver Optical Crosstalk Compensation Poor Warning exist, the reason may be a defective Coaxial Cable instead of a Receiver.

WARNING

Hazardous voltage 500 V is present at the Receiver and at the Board Frame DMF51. Both the line and the battery switches must be turned off before removing the Coaxial Cable.

8.5.3.1 Removal

To detach the Coaxial Cable, you have to detach the receiver first as follows:

1. Detach the Compensation Fiber from the receiver by loosening the screw (See Figure 8-5) with a 1.5 mm hexagon key and pulling the fiber end gently out. Take care not to twist the compensation fiber.

- 2. Detach the Ribbon Cable Connector of the Receiver from the connector J11 at the DMF51 Board Frame. Refer to Figure 8-1.
- 3. Detach the Coaxial Cable from the DCT51 front panel.
- 4. Loosen the CTR21 Receiver attachment ring (See Figure 8-5) using a 2.5 mm hexagon key as a lever; there are holes in the attachment ring for that purpose. If the Receiver begins to move along, stop it from rotating by hand. The photodiode has been centered at the factory do not apply force to the Receiver because this may disturb the centering.
- 5. Take the receiver in your hand and detach the Coaxial Cable from the receiver.
- 6. If the Coaxial Cable is found defective, replace with a new one (refer to the following paragraph 8.5.3.2 Replacement.)

8.5.3.2 Replacement

To replace the Coaxial Cable (Note Paragraph 8.3 Start up procedure for replacement):

- 1. Attach the new Coaxial Cable to connector J2 of the receiver. Note the marked ends of the cable.
- 2. Take the Receiver CTR21 in your hand and set it in place. The ribbon and coaxial cables come out from the back side. Rotate the attachment ring (Figure 8-5) first by hand and then tighten it using a 2.5 mm hexagon key as a lever. If the receiver begins to move along, carefully stop it by hand from rotating. Do not apply force to the receiver itself because it may disturb the centering.

Check the receiver correct position, that is, the long edges of the receiver case are approx. horizontal. If this is not the case, loosen the attachment ring first, then correct the receiver position and fasten as described above.

- 3. Plug the Compensation Fiber into the receiver and tighten the screw (marked Fibre attachment) with a 1.5 mm hexagon key.
- 4. Attach the Coaxial Cable to the connector J1 at the front panel of DCT51.
- 5. Attach the ribbon cable connector to the DMF51 Card Cage to connector J11. Refer to Figure 8-1.
- 6. Connect the Power Cable and the Maintenance Terminal. Turn the power on. No parameter settings are needed. Verify that the Ceilometer is operating properly.

8.6 Compensation Fiber

8.6.1 Compensation Fiber replacement

The Compensation fiber is made from optical fiber. Handle the fiber with care. Don't twist. Do not allow the ends of the fiber to be contaminated by grease or dust.

When there is reason to suspect malfunction of the Compensation fiber (CT25015) do as follows: (Note Paragraph 8.3 Start-up procedure.)

- 1. Identify the black compensation fiber, which leads from the CTR21 Receiver to the Center Block of the optics tube. See Figure 8-3 in paragraph 8.4.3.
- 2. Check with care the position and alignment of the fiber at the Center Block end: The fiber is attached with a flat metal part, which is also supplied with the new fiber. Mark the position of the edges of this part in respect to the Center Block with a pencil.
- 3. Open the **fiber attachment screw** at the receiver bottom (shown in Figure 8-3) with a 1.5 mm hex key. Take this fiber end gently out from the receiver.
- 4. Open the **M3 slotted head screw** (sealed with red paint) that fixes the fiber to the Center block. Look at the replacement fiber and carefully note the shape of the end of the fiber. Take the hooked fiber end carefully out from the center block.
- 5. You can visually compare the old and new fibers now. If the old fiber is totally broken, no light is seen transmitted through it, when one end of the fiber is pointed towards a lamp or other light source. If there are only fractures in the fiber, the light is dim at the other end of the fiber.
- 6. Try to place the new fiber exactly in the same place as the original one was. Tighten the two attachment screws mentioned.
- 7. Perform steps 3 and 4a & 4b under the title 8.4.2 Replacement.
- 8. Perform the Compensation adjustments, all steps under the title 8.4.3 Compensation adjustments.
- 9. Turn the power off. Then start the Ceilometer again and verify that it is operating properly.

NOTE

If you run into trouble performing step 8 above, such that the adjustment is not finished because screw B has already traveled all the way out from the receiver, you also have to adjust the other end of the fiber. (This can be quite laborious.) In this case follow these next steps:

- 10. Turn the B-screw back clockwise until it is several turns inside the threads. (Approximately in the original position).
- 11. Perform steps 1-3 of paragraph 8.4.3. Compensation adjustments again. During step 3, however, loosen slightly the M3 slotted head screw and make very small adjustments to the position of this fiber end. The purpose of these adjustments is to increase the level of optical power that is coupled into the fiber. This effect is seen in the terminal display so that the amount of stars increases, the "empty hole" is filled and finally a case at the bottom left (or upper middle) in Figure 8-4 is reached. When this is achieved, tighten the M3 slotted screw well again and make the fine adjustment with the B-screw. Secure the M3 screw with red paint. Continue to finish the replacement operation as in steps 8 and 9 above.

NOTE


The adjustments at the Center Block end must be very small (0.2 mm or so) and you have to wait a couple of seconds before the effect is seen on the terminal.

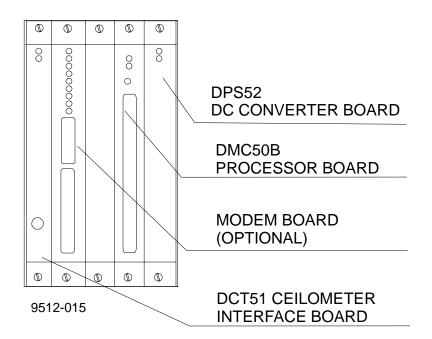
8.7 Optics Monitor CTL21

8.7.1 Removal

When there is reason to suspect malfunction of the Optics Monitor do as follows: (Note Paragraph 8.3 Start-up procedure.)

- 1. Detach the ribbon cable connector from the Optics Monitor CTL21.
- 2. Mark (with pencil) the position of the CTL21 in order to replace it correctly.
- 3. Loosen the two screws (Figure 8-6) with a screwdriver. (The optics monitor ribbon cable remains attached to the Optical Subassembly).
- 4. Send the defective Optics Monitor to Vaisala.

Figure 8-6 Removing the Optics Monitor


8.7.2 Replacement

To replace Optics Monitor CTL21:

- 1. Fasten the Optics Monitor CTL21 to the Ceilometer with two screws (Figure 8-6). The previous horizontal position of the CTL21 is a good estimate of the correct position. (The Sensor Arm of the Optics Monitor should be about in the middle of the lens.)
- 2. Attach the ribbon cable connector to the CTL21.
- 3. Connect the Power Cable and the Maintenance Terminal. Turn the power on.
- 4. If the Optics Monitor has been replaced or the horizontal position of it has been changed, do the following:
 - a) Do the parameter settings for the Laser Transmitter CTT21 as described in Paragraph 8.4.2, Steps 4 a) j), finishing with the Internal Crosstalk Compensation (Paragraph 8.4.3).
 - b) Do the parameter settings for the Receiver CTR21 as described in Paragraph 8.5.2 Steps 7 c) - h). It is not necessary to adjust the Internal Crosstalk Compensation again.

8.8 Boards of Board Frame DMF51

The boards of Board Frame DMF51 are shown in Figure 8-7. Replacement of boards does not require parameter settings except the Ceilometer Interface Board DCT51, the adjustments of which are described in Paragraph 8.8.2.1.

Figure 8-7 Boards of the DMF51 Board Frame

8.8.1 Removing boards

Before removing boards, note Paragraph 8.3 Start-up procedure.

- 1. Detach the connectors that are plugged into the board you want to remove.
- 2. Detach the two screws at the upper and lower end of the board front panel (Figure 8-7). Because the board frame is tightly packed it is recommended to loosen the screws of the adjacent boards. The adjacent board may be partly pulled out to help the removal.
- 3. Pull the board carefully out from the slot.

8.8.2 Replacing boards

- 1. Plug the new board carefully into the corresponding slot (Figure 8-7).
- 2. Attach the new board with the two screws. Then plug in connectors. Cable connections were described in paragraph 2.5.
- 3. When the Ceilometer Interface Board is replaced, the parameters need to be restored, refer to the following Paragraph 8.8.2.1 The other boards of the board frame DMF51 do not need parameter settings. If the DMC50 Processor board has been replaced, the software version of the new board can be checked with the command: GET VERSION →

8.8.2.1 Parameter settings of Ceilometer Interface board DCT51

The Ceilometer Interface Board contains all the measurement related parameters in its EEPROMmemory. When this board is replaced, the parameters need to be restored. Do as follows:

- a) The default baud rate for the maintenance line is 2400 Bd, 7 data bits, 1 Stop bit, Even parity. If some other baud rate was previously used with the removed DCT51, you may have to adjust your maintenance terminal to the default setting to be able to communicate with the ceilometer.
- b) Do the parameter settings for the Laser Transmitter CTT21 as described in Paragraph 8.4.2. Replacement, Step 4. The internal Cross talk Compensation does not need adjusting in this case. Instead, give the command: SET ALGORITHM DEFAULTS ↓
- c) Do the parameter settings for the Receiver CTR21 as described in Paragraph 8.5.2 Replacement, Step 7. The internal Cross talk Compensation does not need adjusting. Instead, give the command: SET DATA_ACQ AUTOADJ ON ↓
- d) Restore the maintenance and data line communication speed, message type, interval, units etc. as required, if defaults are not to be used.

8.9 Line & Power Subassembly CTP241

8.9.1 Removal

When there is reason to suspect malfunction in the Line & Power Subassembly (CTP241), do as follows:

WARNING

The Line & Subassembly contains dangerous voltage of 115 VAC/230 VAC. Turn the power off according to Paragraph 8.3 Start-up procedure before you continue.

NOTE

If the Ceilometer is installed outdoors and a replacement unit is not immediately available, it is advisable either to bring the unit indoors or cover the exposed opening with tape to protect the interior against water, insects. etc.

- 1. If the Ceilometer is mounted on a pedestal, loosen the two attachment screws and tilt the Ceilometer to a horizontal position. If the Ceilometer is already demounted from the pedestal and brought indoors, place the unit on a table with the door upwards.
- 2. Remove the protective cap of the External Connector J4 (Maintenance Line), if the cap is attached. (All cables must be disconnected from the External Connectors J1-J4).
- 3. There are 6 screws at the bottom of the CT25K that are situated **around** the rectangular opening of external connectors J1...J4 (See Figure 8-8). Loosen these screws so that they come out approx. 1 cm (do not remove them completely), releasing the flange of the CTP241.
- 4. Turn the ceilometer to a vertical position again.
- 5. Detach the Internal Heater Cable by pressing the right and left clips of the mating connector at J5 on the CTP241.
- 6. Disconnect the AC Power Interface Connector P6 from the Board Frame DMF51 (J15). Ref. Figure 8-1.
- 7. Disconnect the plug-in Connectors P7 and P8 from the DMC50 Processor Board and modem, if installed.
- 8. Open and remove the screw and spacer that connects the CTP241 to the battery holder, see Figure 8-8.
- 9. Lift the left front corner of the CTP241 approx. 1 cm and pull it out.

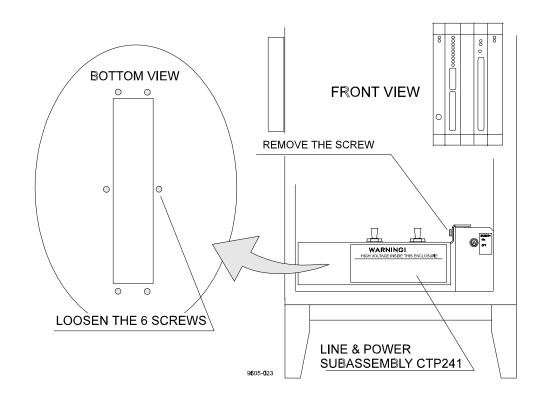
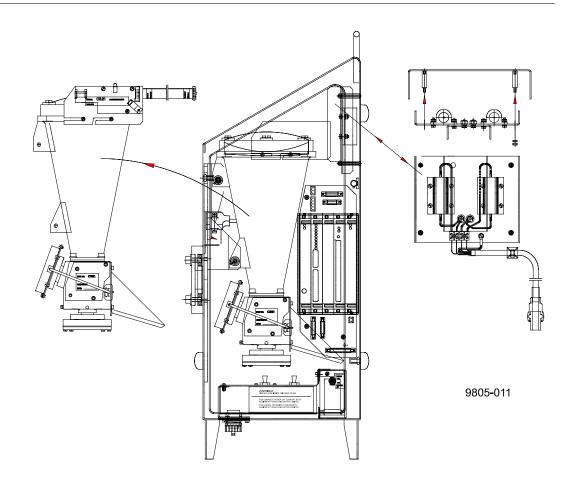


Figure 8-8 Removing Line and Power Interface Subassembly CTP241

8.9.2 Replacement


The Line & Power Subassembly contains dangerous voltage of 115 VAC/230 VAC even when the Power Switch F1 is turned off. Do not connect the Power Cable to an unmounted Line & Power Subassembly.

- 1. Take the CTP241 in your hand. Turn cables P6...P8 so that they stay on the cover of the subassembly. Set the CTP241 in its place.
- 2. Set the screw and spacer that connects the CTP241 to the battery holder in places. Tighten the screw slightly by fingers, see Figure 8-8.
- 3. Connect the plug-in Connectors P7 and P8 to the DMC50 Processor Board and modem, if installed. See the drawing on the front panel for the correct positions.
- 4. Connect the AC Power Interface Connector P6 to the Board Frame DMF51 (J15). Ref. Figure 8-1.
- 5. Plug Internal Heater cable into connector J5 on the CTP241.
- 6. Turn the Ceilometer to horizontal position.

- 7. Turn the 6 screws at the bottom of the CT25K clockwise (Figure 8-8) and push then slightly until they go through the holes in the gasket of the connector flange. Then tighten the screws normally.
- 8. Tighten the screw that connects the CTP241 to the battery holder (Figure 8-8) to normal tightness.
- 9. Attach the cables to External Connectors J1-J4.
- 10. Turn the Ceilometer to vertical position and tighten the screws of the pedestal.
- 11. Verify that the Ceilometer is operating properly.

8.9.3 Internal Heater Subassembly CT25039 Replacement

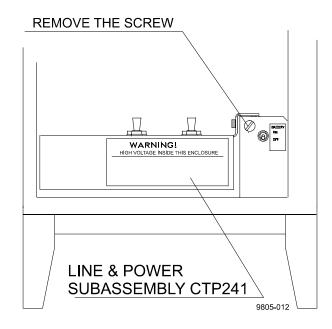

- 1. Remove the following connectors:
 - Optics Monitor CTL21 connector P2
 - Laser Transmitter CTT21 connector P3
 - Receiver CTR21 connector P1
 - Coaxial Cable CT3696 connector P1
- 2. Take a good hold on the CTB22 Optical Subassembly from the black part with one hand. Do not touch the transmitter, receiver or the black cone on the opposite side of the receiver. Open the two screws shown in Figure 8-9 using a 6 mm hex key with the other hand.
- 3. Carefully remove the optics subassembly. Do not touch the compensation fiber. Place the optics subassembly carefully on the table so that the laser transmitter and the receiver do not touch the table.
- 4. Open the four nuts at the corner of the internal heater.
- 5. Disconnect the wires and replace the heater with a new subassembly.
- 6. Assemble CTB22 Optical Subassembly and cables back in their original positions.

Figure 8-9 Internal heater replacement

8.9.4 Battery 4592 replacement instructions

- 1. Open the screw from the battery switch subassembly front panel shown in Figure 8-10 and remove the panel.
- 2. Pull the battery out by the plastic stripe attached around the battery. Do not pull by the battery switch connector wires.
- 3. Detach the red and black wires from the battery and move them to the new battery. Transfer the plastic pull-out stripe to the new battery.
- 4. Put the battery back in its original position and close the front panel with the attachment screw.

Figure 8-10 Battery replacement

A

Alarm check	87
Alarms	
Laser failure	96
Laser temperature shut-off	96
Receiver failure	96
Voltage failure	96
ANet TM	7
ANet TM interface DMX611	80
20-pin connector on the front panel	81
Connector layout	
DIP switch settings	
LED indicators	
Phone jack	81
Angle correction	
Angle measurement	
Parameter settings	23
Tilt feature	
APD	57
Atmospheric transmittance	50
Avalanche photodiode (APD)	
Average laser power	
C 1	

B

Background light	37
Backscatter	1
Backscatter coefficient	51
Backscatter signal	49
Battery charger	
Bulk charge	
Float charge	
Over charge	
Trickle charge	
Beam divergence	
Beamsplitter	
Bird droppings	
Blink timer	
Board frame DMF51	
Removing boards	116
Replacing boards	

С

INDEX

CPU Board	63
CT-VIEW	89

D

E

Earthing	See Grounding
EEPROM	
Electrostatic discharge	xi
Environmental conditions	9
ESD	xi
ESD protection bag	
External connections	
External connector J1	
External connector J2	
External connector J3	
External connector J4	6
Extinction coefficient	
Extinction normalization	

F

Failure diagnosis	
Fiberglass pedestal	
Focal length	9
Foundation	11
Foundation screws	11
Frame DMF51	

G

GET
GET ALGORITHM 46
GET DATA_AQC 46
GET FACTORY 47
GET MESSAGE 47
GET OPER_MODE 47
GET PORT 47
GET STATUS42, 48
GET UNIT_ID 47
GET command22, 31
Grounding16

H

Hard target test	92
Hardware history	viii
Height normalization	51
8	

Ι

Infrared interference filter	57
Installation	10
Internal heaters subassembly CT25039	72
Internal voltages	43
Inversion	52

L

M

Maintenance	7
Alarms and warnings	7
Battery check	
Maintenance terminal PSION3	
Connecting PSION3 to CT25K 18	3
Operation	3
Port settings	5
PSION3	
Manual angle setting 47	7
Manual message	
Max irradiance	
Measurement mode	
Measurement parameters	7
Measurement range)
Measurement signal 49	
Measurement unit	
Mechanical specifications	3
Meteorological Optical Range MOR 51	
Mobile operation	
Modem board DMX50	7
Modem board DMX556	5
Modem DMX50	3
Connector layout79)
LED indicators	
Safety precautions79)
Switched point-to-point connections	3

N

Narrow-band filter	
No-break power supply	
Noise cancellation	
Normal operation	

0

OPEN command	
Operating principle	
Operation modes	
CONTINUOUS	
STANDBY	
Optical cross-talk	57, 60
Optical filter	
Optical subassembly CTB22	
Optical system	
Optical termination hood	
Optics monitor CTL21	
Removal	
Replacement	
Output interface	
Overvoltage protection	
	. , - , -

P

Parts list	54
Password	27
PC terminal cable	3
Performance	9
Periodic maintenance	87
Pin connections	5, 6
PIN photodiodes	61
Polling mode	45
Polling string	45
Polling string format	33
Power and signal termination boxes	
Wire dimensions	16
Power consumption	3
Power disconnection	71
Prevailing control and parameter settings .	46
Principle of operation	
Processor	64
Processor board DMC50B	63
A-to-D converter	64
DIP switch settings	66
Processor	
Serial communication ports	64
Technical information	
Proper operation	
PSION3	89

Pulse properties		.8
------------------	--	----

Ceilometer CT25K User's Guide

R

Receiver
Receiver CTR2160
Coaxial cable replacement111
Removal108
Replacement109
Specifications
Technical description60
Repair
Repetition rate
Resolution
Return instructions
Return signal strength50
Revision history viii

S

Safetyix
SCALE
Secondary APD57
Serial lines
CLOSED26
DATA25
MAINTENANCE
OPEN
SET command
Shock absorber
Sky condition
Activation
Option code
Software revisions viii
Specifications
START command
Start up procedure
Start up procedure for replacement10
Storage
SUM
Switch settings for normal operation22

T

Temperature	44
Termination boxes	2
Theory of operation	49
Thermal switches	72
Tilt angle	47
Tilt angle sensor CT3675	73
Tilt feature	14
Hard target	14

In the tropics	
Transimpedance amplifier	60
Transmitter	
Transmitter CTT21	59
Calibration factor	103
Removal	
Replacement	102
Transportation	
Tropics window	
Troubleshooting	89
Alarms	
Warnings	
-	

U

Unloading and unpacking	
Unpacking procedure	
User commands	
BACK	
CLOSE	
GET	
RESET	
SET	
START	
STOP	

V

Vertical visibility	. 52
Volume backscatter coefficient	. 50

W

Warning check	87
Warnings	93
Battery low warning	
Laser power low warning	
Laser temperature high or low warning	94
Receiver optical cross-talk compensation p	oor
warning	95
Relative humidity >85% warning	
Voltage high or low warning	94
Window contamined warning	93
Wavelength	
Wedge bolts	
Window cleaning	
Window conditioner CT2614/CT2688	
Writing conventions	99
X	