Last Updated: January 7, 2014 Final Dataset

Data Format Documentation

Instrument: PARSIVEL²

Overview:

This dataset contains observations by the PARSIVEL² during the IFloodS field campaign, which took place in eastern Iowa. One PARSIVEL² was deployed on each Autonomous Parsivel Unit (APU) deployed for the campaign. A total of 14 APUs were deployed for IFloodS. It does not contain any precipitation identification since it is not possible to separate rain and snow particles from each unique Parsivel² measurement.

Important Note: Time stamps on some of the APU data collected through May 7th were found to be in error. All processed data has been corrected for such offsets, but these time offsets still remain in the level 1A data (i.e., *.raw.txt files). See APPENDIX D before processing level 1A data.

Data Organization:

The processed Parsivel² data set is contained within daily tar archives. The daily archive is named with the following convention,

ifloods_apu[sn]_[date]_[latitude_longitude].tar

where [sn] = serial number of APU platform (e.g., apu01) [date] = YYYYmmDD (e.g., 20110422) [latitude_longitude]=geographic location of instrument (e.g., N363442.07_W0972640.90 is North 36°34'42.07" and West 97°26'40.90")

and consists of ASCII encoded files containing information on the drop size distribution and integral precipitation parameters such as precipitation rate, reflectivity and mass-weighted mean diameter.

The following files may be contained within the tar archive and follow a similar naming convention as above:

- *_dropCounts.txt: quality-controlled number of hydrometeors in each diameter bin each minute hydrometeors were detected (see APPENDIX B for bin definitions)
- *_rainDSD.txt: quality-controlled raindrop size distribution (based on measured fall velocities) for each diameter bin each minute rain was detected (see APPENDIX B for diameter bin definitions)

Last Updated: January 7, 2014 Final Dataset

- *_rainDSD_vT.txt: quality-controlled raindrop size distribution (based on terminal fall velocities) for each diameter bin each minute rain was detected (see APPENDIX B for bin definitions)
- *_rainParams.txt: quality-controlled integral parameters (based on measured fall velocities) for each minute hydrometeors were detected
- *_rainParams_vT.txt: quality-controlled integrated parameters for rain (based on terminal fall velocities) for each minute hydrometeors were detected

Additional processed Parsivel data sets, which are not contained within a daily tar archive but use a similar file naming convention, provide a summary of the precipitation events measured by the Parsivel during the entire campaign.

 *_rainEvents.txt: quality-controlled total rainfall measured for a continuous period of precipitation

The raw measurements made by the Parsivel have been compressed using the zip compression utility. These compressed files follow a similar naming convention as the daily tar archives, but with a "zip" file extension, and contain:

- *_raw.txt: Parsivel calculated parameters and unfiltered drop spectrum
 - contains the temperature, integral rain parameters and the present weather codes (see APPENDIX C) as calculated by the Parsivel firmware
 - also contains the number of particles measured within each of the 32 diameter bin and 32 velocity bins (see APPENDIX A for bin definitions)

File Format:

Level 1A: raw files (*_raw.txt)

Format: ASCII

Format of each line:

YYYYmmDDHHMMSS;[sn], sensor status, temperature (°C), number of particles detected, rain rate (mm/hr), reflectivity (dBz), MOR Visibility (m), Weather code according to SYNOP WaWa Table 4680 (see APPENDIX C), Weather Code according to SYNOP WW Table 4677 (see APPENDIX C), number of particles within each diameter and velocity class (1,024 total classifications with bin1=[D[1],v[1]],bin2=[D[1],v[2]],...bin33=[D[2],v[1]],etc.; see APPENDIX A for bin definitions)

Note: Timestamps in the raw files have not been adjusted for any time offset (see APPENDIX D before processing).

Note: The integration period in the level 3 data begins at the minute specified on each line

Level 3: drop count files (*_dropCounts.txt,)

Filtering methods:

• Raindrops exceeding 50% of their terminal fall speed (Gunn and Kinzer 1949) are removed to eliminate spurious measurements (e.g., splash drops, insects, etc.). This is similar to the threshold used by Tokay et al. (2001) and Jaffrain and Berne (2011).

Format: ASCII

Format of each line:

year, day of year, hour, minute, number of drops (flakes) in each of the 32 diameter bins corrected for drop shape (see APPENDIX B)

Level 3: drop size distribution (DSD) files (*DSD.txt, *DSD_vT.txt)

Filtering methods:

• Raindrops exceeding 50% of their terminal fall speed (Gunn and Kinzer 1949) are removed to eliminate spurious measurements (e.g., splash drops, insects, etc.). This is similar to the threshold used by Tokay et al. (2001) and Jaffrain and Berne (2011).

Format: ASCII

Format of each line: year, day of year, hour, minute, particle concentration (m⁻³mm⁻¹) in each of the 32 diameter bins

Level 3: Integral parameters (*_Params.txt, *_rainParams.txt, *_rainParams_vT.txt)

Filtering methods:

- Diameter bins are corrected for oblateness (see APPENDIX B) in producing rain files
- Raindrops exceeding 50% of their terminal fall speed (Gunn and Kinzer 1949) are removed from rain files to eliminate spurious measurements (e.g., splash drops, insects, etc.). This is similar to the threshold used by Tokay et al. (2001) and Jaffrain and Berne (2011).
- Minutes with fewer than 10 drops and rainfall rate below 0.01 mm/hr are also removed from the rain files to eliminate noise.

Format: ASCII

Format of each line:

year, day of year, hour, minute, temperature (°C), total number of drops, total drop concentration (m^{-3}), liquid water content (g m^{-3}), rain rate (mm h^{-1}), reflectivity in Rayleigh regime (dBZ), mean mass-weighted diameter (mm), standard deviation of mean mass-weighted diameter, maximum drop diameter (mm)

Level 3: Event summaries: rainEvent

Processing methods:

- Events are separated by one or more hours of precipitation-free periods based on the rain rates calculated from the one-minute particle counts
- Events must persist more than 3 minutes or have at least 0.1 mm of liquid accumulation.

Format: ASCII

Format of each line:

year, day of year precipitation begins, beginning of precipitation (HH:MM), day of year precipitation ends, ending of precipitation (HH:MM), number of precipitation observations (minutes), event maximum rainfall rate (mm/hr), event total liquid water accumulation (mm), and event mean temperature (°C)

APPENDIX A: Level 1A Data

Volume-equivalent of	liameter classification:			
Bin Number	Bin Average (mm)	Bin Spread (mm)		
1	0.062	0.125		
2	0.187	0.125		
3	0.312	0.125		
4	0.437	0.125		
5	0.562	0.125		
6	0.687	0.125		
7	0.812	0.125		
8	0.937	0.125		
9	1.062	0.125		
10	1.187	0.125		
11	1.375	0.250		
12	1.625	0.250		
13	1.875	0.250		
14	2.125	0.250		
15	2.375	0.250		
16	2.750	0.500		
17	3.250	0.500		
18	3.750	0.500 0.500		
19	4.250			
20	4.750	0.500		
21	5.500	1.000		
22	6.500	1.000		
23	7.500	1.000		
24	8.500	1.000		
25	9.500	1.000		
26	11.000	2.000		
27	13.000	2.000		
28	15.000	2.000		
29	17.000	2.000		
30	19.000	2.000		
31	21.500	3.000		
32	24.500	3.000		

x 7 . 4: .1. ::: .:

Velocity classification:

Bin Number	Bin Average (m/s)	Bin Spread (m/s)	
1	0.050	0.100	
2	0.150	0.100	
3	0.250	0.100	
4	0.350	0.100	
5	0.450	0.100	
6	0.550	0.100	
7	0.650	0.100	
8	0.750	0.100	
9	0.850	0.100	
10	0.950	0.100	
11	1.100	0.200	
12	1.300	0.200	
13	1.500	0.200	
14	1.700	0.200	
15	1.900	0.200	
16	2.200	0.400	
17	2.600	0.400	
18	3.000	0.400	
19	3.400	0.400	
20	3.800	0.400	
21	4.400	0.800	
22	5.200	0.800	
23	6.000	0.800	
24	6.800	0.800	
25	7.600	0.800	
26	8.800	1.600	
27	10.400	1.600	
28	12.000	1.600	
29	13.600	1.600	
30	15.200	1.600	
31	17.600	3.200	
32	20.800	3.200	
<u> </u>	20.000	5.200	

APPENDIX B: Level 3 Data

	liameter classification (corrected for		
Bin Number	Bin Average (mm)	Bin Spread (mm)	
1	0.064	0.129	
2	0.193	0.129	
3	0.321	0.129	
4	0.450	0.129	
5 6	0.579	0.129	
	0.708	0.129	
7	0.836	0.129	
8	0.965	0.129	
9	1.094	0.129	
10	1.223	0.129	
11	1.416	0.257	
12	1.674	0.257	
13	1.931	0.257	
14	2.189	0.257	
15	2.446	0.257	
16	2.832	0.515	
17	3.347	0.515	
18	3.862	0.515	
19	4.378	0.515	
20	4.892	0.515	
21	5.665	1.030	
22	6.695	1.030	
23	7.725	1.030	
24	8.755	1.030	
25	9.785	1.030	
26	11.330	2.060	
27	13.390	2.060	
28	15.450	2.060	
29	17.510	2.060	
30	19.570	2.060	
31	22.145	3.090	
31 32	25.235	3.090	

Volume-equivalent diameter classification (corrected for drop shape):

Note: Correction of diameter bins, D, for drop shape follows Beard (1976) methodology for $D \leq 6.0mm$ and a linear interpolation is performed for D > 6.0mm (bins 22 through 32).

Terminal	l vel	ocity	cl	assification:
----------	-------	-------	----	---------------

Bin Number	Bin Average (m/s)Bin Spread (m/s)		
1	0.089	0.05	
2	0.659	0.15	
3	1.239	0.25	
4	1.803	0.35	
5	2.353	0.45	
6	2.889	0.55	
7	3.404	0.65	
8	3.892	0.75	
9	4.329	0.854	
10	4.705	0.962	
11	5.217	1.128	
12	5.833	1.354	
13	6.389	1.588	
14	6.886	1.828	
15	7.326	2.075	
16	7.878	2.398	
17	8.424	2.782	
18	8.785	3.15	
19	9.002	3.502	
20	9.117	3.838	
21	9.173	4.4	
22	9.248	5.2	
23	9.323	6	
24	9.398	6.8	
25	9.473	7.6	
26	9.586	8.8	
27	9.735	10.4	
28	9.885	12	
29	10.035	13.6	
30	10.185	15.2	
21	10.272	17.6	
31	10.372	17.6	
32	10.597	20.8	

Note: Correction of diameter bins, D, for drop shape follows Beard (1976) methodology for $D \leq 6.0mm$ and a linear interpolation is performed for D > 6.0mm (bins 22 through 32).

Table 4680	Table 4677	Rain Rate (mm/hr)	Intensity	Precipitation Type
00	00			No precipitation
51	51	≤0.2	light	Drizzle
52	53	0.2-0.5	moderate	Drizzle
53	55	≥0.5	strong	Drizzle
57	58	≤0.2	light	Drizzle with rain
58	59	0.2-0.5	moderate	Drizzle with rain
58	59	≥0.5	strong	Drizzle with rain
61	61	≤0.2	light	Rain
62	63	0.2-4.0	moderate	Rain
63	65	≥4.0	strong	Rain
67	68	≤0.5	light	Rain, drizzle with snow
68	69	>0.5	moderate	Rain, drizzle with snow
71	71	≤0.5	light	Snow
72	73	0.5-4.0	moderate	Snow
73	75	≥4.0	strong	Snow
77	77	≤0.5	light	Snow grains
77	77	0.5-4.0	moderate	Snow grains
77	77	≥4.0	strong	Snow grains
87	87	≤0.4	light	Freezing rain
88	88	>0.4	moderate	Freezing rain
89	89	≤7.5	light	Hail
89	90	>7.5	moderate	Hail

APPENDIX C: SYNOP Weather Codes

*Note: Precipitation code is determined by the Parsivel*² *from the number of particles in the measurement range and from the precipitation rate (water amount equivalent).*

APPENDIX D: APU RAW DATA TIME OFFSETS DURING IFLOODS

The measurement time stamps in the APU level 1A datasets (i.e., *raw.txt files) for those APUs listed in the table below should be adjusted accordingly before processing. For example, add 58 seconds to APU14 raw data collected prior to 14:40 UTC on May 4, 2013.

APU	Time offset from actual (seconds)	Adjust all data collected before
APU14	-58	14:40 UTC on May 4
APU13	-57	14:00 UTC on May 4
APU12	-145	13:47 UTC on May 5
APU11	-137	13:51 UTC on May 5
APU10	-134	13:55 UTC on May 5
APU09	-134	13:53 UTC on May 5
APU04	-136	20:38 UTC on May 4
APU02	-122	20:00 UTC on May 4
APU01	-118	18:30 UTC on May 4

Last Updated: January 7, 2014 Final Dataset

References:

Beard, K. V., 1976: Terminal velocity and shape of cloud and precipitation drops aloft. *J. Atmos. Sci.*, **33**, 851–864.

Gunn, R. and G. D. Kinzer. 1949. The terminal velocity of fall for water drops in stagnant air. *J. Meteor.*, **6**, 243–248.

Jaffrain, Joël, Alexis Berne, 2011: Experimental quantification of the sampling uncertainty associated with measurements from PARSIVEL Disdrometers. *J. Hydrometeor*, **12**, 352–370.

Tokay, A., A. Kruger, and W. Krajewski, 2001: Comparison of drop size distribution measurements by impact and optical disdrometers. *J. Appl. Meteor.*, **40**, 2083–2097.